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Abstract—Connections among different entities of a social
network can be extracted based on social interaction activity
records. Activity records present an inherent level of uncertainty
when ranking methods are introduced to rate the importance
of each record based on a predetermined scale. With time,
activity records may become stale and cluttered with non-relevant
information. The extraction of key actors on a social network,
and the ability of identifying primary interaction routes between
entities of a network is of paramount importance in social
network analysis (SNA). In this paper, we introduce a methodol-
ogy that incorporates into the social interaction activity records
the uncertainty and time sensitiveness of the events through
Fuzzy Social Networks Analysis (FSNA). Also, we investigate an
approach based on the analysis of current flows in electrical
networks for the extraction of primary routes of interaction
among key actors in a social network.

Index Terms—fuzzy graphs, social network analysis, current
flows, FSNA, fuzzy sets.

I. INTRODUCTION

THE use of social networks for the representation of
human social interaction has become one of the most

important approaches for the analysis of human activities in
a network that models interactions among its entities. Social
networks are usually represented as graphs, where actors are
nodes, and the relationships between entities are edges of the
graph. Several methods for the construction of social network
graphs have been proposed over the last two decades [1]. In
[2], a Fuzzy Social Network Graph (FSNG) representation
based on a consolidation operation that combines activity
records between entities has been proposed. In this paper,
we investigate a methodology for the construction of a fuzzy
social network which incorporates the uncertainty introduced
to the network by a raking system of the activity records.
Also, we introduce a time sensitive function that allows for the
evaluation of activity records based on relevancy (how current
the records are relative to the evaluation date) and the length of
time that a piece of information is considered relevant before
it becomes stale.

The analysis and comparison of graphs representing social
networks, when the size of the graph is too large, can prove
to be computationally complex. Several error-tolerant graph
matching techniques for very large graphs have been proposed
[3], [4], [5], [6], [7], [8]. Error-tolerant graph matching tech-
niques offer suboptimal solutions to the subgraph isomorphism
problem, and some of them are computational feasible for very

large graph structures. Here, we investigate an approach that
uses current flow analysis in electrical networks to identify
key actors on a social network, and primary interaction routes
between the entities.

II. RELATED WORK

FSNGs provide the necessary tools to incorporate the un-
certainty in the relationships between the entities of a social
network. In [2], Nair and Sarasamma propose an approach to
model fuzzy social network graphs. Their approach is based
on the reduction of the size of a FSNG accomplished by
combining connections between actors that represent activity
records between the same pair of entities. A new fuzzy oper-
ation has been proposed: the consolidation operation, where
the fuzzy graph is a fuzzy graph of type V [9], in this case
the set of vertices and edges are crisp, but the edge weights
are fuzzy. The consolidation operation is defined as follows:
If, α, β ∈ [0, 1], then ⊗ : [0, 1] × [0, 1] → [0, 1] is defined by
α⊗β = α+β−αβ. Multiple edge weights between the same
pair of entities are then consolidated as a single edge using
the consolidation operation.

Current flow analysis has been discussed in [10], [11] for
the extraction of dense subgraphs and is related to electrical
currents in a network of resistors. This approach deals with the
problem of finding the connection subgraph that can deliver as
many units of electrical current as possible. For this purpose,
a graph G = (V,E) is treated as an electrical network, where
edge weights represent conductance: C(u, v), and vertices
represent the nodes of the electrical circuit. The voltages:
V (u), at each node of the circuit are calculated by combining
Ohm’s law and Kirchhoff’s current law.

∀u, v : I(u, v) = C(u, v)(V (u)− V (v)) (1)

∀v 6= s, t :
∑

u

I(u, v) = 0 (2)

Having s as the source node, and t as the target node,
equations (1) and (2) determine the voltages and currents as
the solution to the following linear system:

V (u) =
∑

v

V (v)C(u, v)
C(u)

∀u 6= s, t (3)

V (s) = 1, V (t) = 0 (4)
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C(u) =
∑

v

C(u, v) (5)

Solving (3) with boundary conditions (4) determines the
voltages at each node. C(u) represents the total conductance of
node u, this is, the sum of all edge weights adjacent to u. Once
the values of the current, I(u, v) are available, the current
along a particular path: Î(P ) P = {s, . . . , t} is defined as
the pro-rated current along that path from source to target.

Î(s, u) = I(s, u) (6)

Î(s = u1, . . . , ui) = Î(s = u1, . . . , ui−1)
I(ui−1, ui)
Iout(ui−1)

(7)

where Iout(u) =
∑
{v|u→v} I(u, v). Iout(u) is the total

current leaving a node, which is equal to the sum of all currents
leaving the node in a downhill stream, where a downhill stream
from node u to node v means that voltage at node u is higher
than voltage at node v, V (u) > V (v). Since the idea of the
approach presented in [10], [11] is to find the best connection
subgraph, the concept of capture flow CF (H) is introduced.
CF (H) of a subgraph H of G is the total delivered current,
summed over all paths from source s to target t that belong to
H.

III. FSNG BASED ON ACTIVITY RECORDS

The construction of a FSNG based on activity records
is done by using the information obtained through several
sources and collected in an activity record journal, where
interactions among entities is captured as well as rated for
future reference. An activity record is defined as a tuple:
〈date, description, importance〉. Date represents the date of
the event. Description represents the description of the event,
including parties involved, places, etc. Importance represents
a ranking of the event compared to others. An example of an
activity records looks like this:

〈10/03/07, Phone call between entities A and B, High〉.

We can clearly use a fuzzy linguistic variable [12] when
describing the importance of the event. Different experts
could rate similar events in different ways, at different levels
of importance. We define importance as a fuzzy linguistic
variable represented by the following fuzzy sets:
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Figure 1. Importance variable

From Fig. 1, we observe that five fuzzy sets have been
defined: very low, low, medium, high, and very high. Each
of these fuzzy sets can be represented using a triangular fuzzy
number. Table I shows the value of each of the fuzzy sets

representing the importance variable. We use the L-R fuzzy
number notation, where a fuzzy number is defined as a tuple
〈m,α, β〉, where m is the mean value, α is the left spread, and
β is the right spread [13].

Table I
L-R fuzzy numbers for importance variable.

Fuzzy set L-R fuzzy number
very low (0.00,0.00,0.25)

low (0.25,0.25,0.25)
medium (0.50,0.25,0.25)

high (0.75,0.25,0.25)
very high (1.00,0.25,0.00)

Now that we have defined a fuzzy number for each of the
possible values assigned to the importance variable, we can
redefine our activity records as follows:

〈date, entities involved, importance〉 →
〈10/03/07, [A,B] , (0.75,0.25,0.25)〉

so far we have introduced an approach to include the
inherent uncertainty of activity reports within our activity
record format. But there is still a problem with the activity
record definition. We are not taking into account the validity of
the information based on how old the information is. Activity
records of more than 5, or 10 years could be meaningless
for our purposes. Therefore, we need a way to cope with the
problem of information aging. Thus we propose a function that
will modify the importance variable over time, in the form of

m = xm × e−
days

365×Y (8)

α ={ m m− 0.25 < 0
0.25 m− 0.25 ≥ 0 (9)

β ={ 1−m m+ 0.25 > 1
0.25 m+ 0.25 ≤ 1 (10)

where x is a L-R fuzzy number, m is the mean value of the
x, and the variable days represents the number of days that
have passed since the event date. Y is a constant that represents
the number of years during which the event will have some
relevance. For example, assume the following activity records:

P:〈08/15/05, [A,B] , (0.75,0.25,0.25)〉
Q:〈10/03/07, [A,B] , (0.25,0.25,0.25)〉

Event P occurred back on 2005, and event Q is a more
recent event. Event P has a high importance, while event Q has
a low importance. We evaluate both events as of 11/01/2007,
with a Y constant factor of 5 years. After applying equations
(8), (9), and (10) to calculate the importance value as of
11/01/2007 we get:

P:〈08/15/05, [A,B] , (0.4817,0.25,0.25)〉
Q:〈10/03/07, [A,B] , (0.2461,0.2461,0.25)〉

As we can observe, event P after 808 days has an impor-
tance close to medium. While event Q, which is very recent,
keeps its low importance.
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Based on activity records, one can construct a graph rep-
resenting the relationships between the entities involved in
joined activities. The methodology we propose is to transform
the original activity records, replacing the importance rating
given by the expert, to a fuzzy linguistic variable as defined
in Table I. Once all records are represented within the fuzzy
rating framework, the importance assessment based on eval-
uation time, as defined by (8), (9), and (10) must be applied
to each record on the activity log. With the new activity log
reflecting the uncertainty and time sensitivity of the records,
we can proceed to construct the FSNG.

The set of nodes of the FSNG is defined as the set of
actors in the activity records. The set of edges of the graph
represents how strong is the relation between actors based on
the activity records. In order to calculate the weight of the
edges, the importance factor, after it has been transformed, is
recomputed for each record relating the same two actors, via
equations (11) and (12) below:

Imp(a, b) =
∑

∀ activity a,b

importance(a, b) (11)

G = 〈V,E,w〉
V = {x : x is an actor}

Ex,y = {∀x ∈ V, y ∈ V : Imp(x, y) > 0}
w(Ex,y) = EV (Imp(x, y))

(12)

The edge weights as defined by (11) and (12) are defined
as the expected value (EV) [12] of the sum of all the
activity records between actors a and b. The expected value
of a triangular fuzzy number x = (a, b, c) is defined as
EV (x) = a+b+c

3 . Since we are using the L-R fuzzy number
representation, the expected value (EV) of fuzzy number
x = (m,α, β) is defined as:

EV (x) = m+
β − α

3
(13)

We now present an example based on the activity log de-
scribed in Table II. Table IV represents the connections (edge
weights) between all of the actors based on the transformations
to the importance factor represented in Table III. Figure 2
shows the FSNG extracted from Table IV.

Figure 2. FSNG based on Activity Log

Table II
ACTIVITY LOG

Date Actors Event Description Rating
01/05/05 A,B Phone Call from A to B High
02/10/05 B,C $10,000 deposit from B to C High
02/12/05 B,D Phone call from B to D Low
02/12/05 C,D Fax from C to D Very High
03/01/05 A,C Phone Call from C to A Very Low
09/10/05 A,B $1,200 deposit from A to B Medium
09/25/05 B,C $500 deposit from B to C Low
09/26/05 B,C $200 deposit from B to C Very Low
09/30/05 C,D $800 deposit from C to D Low
10/02/05 B,C Phone Call from C to B Very High
10/28/05 A,B Phone Call from B to A High
11/02/05 C,D Phone Call from D to C Medium
12/01/05 D,E Phone Call from D to E High
08/01/06 A,B Phone Call from B to A High
09/20/06 C,D Fax from C to D Very Low
10/23/06 B,E Phone Call from B to E Low
01/03/07 A,B,C Meeting Between A,B, and C Very High
05/04/07 C,D Phone Call from D to C Medium
06/01/07 B,D Phone Call from D to B Low
08/17/07 A,C Phone Call from C to A Very Low
09/30/07 A,B $30,000 deposit from A to B Very High
10/05/07 B,C $10,000 deposit from B to C High
10/20/07 C,D Fax from C to D Low
10/25/07 D,E Phone Call from E to D Medium

Table III
MODIFIED ACTIVITY LOG AS OF 11/01/2007

Days Actors Rating Importance
1030 A,B (0.75,0.25,0.25) (0.4265,0.25,0.25)
994 B,C (0.75,0.25,0.25) (0.4350,0.25,0.25)
992 B,D (0.25,0.25,0.25) (0.1452,0.1452,0.25)
992 C,D (1.00,0.25,0.00) (0.5807,0.25,0.25)
975 A,C (0.00,0.00,0.25) (0.00,0.00,0.25)
782 A,B (0.50,0.25,0.25) (0.3257,0.25,0.25)
767 B,C (0.25,0.25,0.25) (0.1642,0.16421,0.25)
766 B,C (0.00,0.00,0.25) (0.00,0.00,0.25)
762 C,D (0.25,0.25,0.25) (0.1647,0.1647,0.25)
760 B,C (1.00,0.25,0.00) (0.6594,0.25,0.25)
734 A,B (0.75,0.25,0.25) (0.5016,0.25,0.25)
729 C,D (0.50,0.25,0.25) (0.3353,0.25,0.25)
700 D,E (1.00,0.25,0.00) (0.6814,0.25,0.25)
457 A,B (0.75,0.25,0.25) (0.58389,0.25,0.25)
407 C,D (0.00,0.00,0.25) (0.00,0.00,0.25)
374 B,E (0.25,0.25,0.25) (0.2037,0.2037,0.25)
302 A,B,C (1.00,0.25,0.00) (0.8475,0.25,0.1525)
181 C,D (0.50,0.25,0.25) (0.4528,0.25,0.25)
153 B,D (0.25,0.25,0.25) (0.2299,0.2299,0.25)
76 A,C (0.00,0.00,0.25) (0.00,0.00,0.25)
32 A,B (1.00,0.25,0.00) (0.9826,0.25,0.0174)
27 B,C (0.75,0.25,0.25) (0.7390,0.25,0.25)
12 C,D (0.25,0.25,0.25) (0.2484,0.2484,0.25)
7 D,E (0.50,0.25,0.25) (0.4981,0.25,0.25)

Table IV
EDGE WEIGHTS BASED ON TABLE 3

Actors Imp(a, b) EV (Imp(a, b))

A B (3.6679,1.5,1.1699) 3.5578
A C (0.8475,0.25,0.6525) 0.9817
B C (2.8451,1.1642,1.4025) 2.9245
B D (0.3751,0.3751,0.5) 0.4167
B E (0.2037,0.2037,0.25) 0.2191
C D (1.7818,1.163,1.5) 1.8942
D E (1.1795,0.5,0.5) 1.1795

Once the FSNG has been constructed based on the activity
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log, we can proceed with the calculation of the current flows.
In the next section, we focus on the current flows calculation
along two actors of the graph. The current flows between
two actors, representing the flow of information, or resources,
between these two actors based on the connections with other
entities in the network.

IV. CURRENT FLOW ALONG TWO ACTORS OF THE SOCIAL
NETWORK.

Now that we have investigated how to generate the FSNG,
we can proceed with the current flow calculation along any
pair of entities. Calculating currents is performed using nodal
analysis as described in section II. Each relationship can be
described as a path from source to target, P = (s, . . . , t). As
noted by equation (4) voltages in source and target are given
by V (s) = 1, V (t) = 0. In this scenario, the source will act as
the voltage source, and the target as the ground. In the case that
the graph has some nodes of degree 1 that are not the source
nor the target, these nodes are considered to be grounds as
well, hence the voltage at these nodes is V (u) = 0.

Once the voltage for source node and ground nodes have
been specified, we can proceed to solve a system of linear
equations with n variables, where n is equal to the total number
of vertices of the graph, minus source and grounds nodes. This
system can be reduced to solving an eigenvector calculation
of the form [

A B
0 I

]
V = V (14)

A =
{
aij =

wij

wj

}
(15)

where matrix A represents the relationship between the
nodes based on their connection weights, B represents the
boundary conditions for s, t, and other ground nodes, and I is
the identity matrix. The solution to the system of equations
represents the voltages at each of the n nodes. With the
voltages for each node we can now calculate the current for
each edge using equation (1). Once we have calculated the
current along each edge, we need to calculate the current flow
along each possible path between the two selected actors. This
is done using equations (6) and (7). The current flow is a pro-
rated amount from source to target based on the total current
along each node in the path and the total current leaving each
of the nodes along the path.

Based on the FSNG shown in Figure 2, and taking actors
A and E as source and target, we have the following system
of equations: −7.1181 2.9245 0.4167

2.9245 −5.8004 1.8942
0.4167 1.8942 −3.4904

V =

 −3.5578
−0.9817

0.00


(16)

V (A) = 1 V (E) = 0 (17)

The above system of equations produces the following
voltages:

V (B) = 0.84 V (C) = 0.76 V (D) = 0.51 (18)

Calculating the currents along each edge using equation
(1), the FSNG, represented by its voltages and currents is
represented in Figure 3.

Figure 3. Voltages and Currents

Now we proceed to calculate the current along each path
between A and E. It should be noted that based on the current
flow only downhill paths can be calculated. A downhill path
from node u to node v means that voltage at node u is higher
than voltage at node v, V (u) > V (v):

A→ B → E = 0.19
A→ C → D → E = 0.24
A→ B → D → E = 0.14
A→ B → C → D → E = 0.24

In [10], [11], the concept of captured flow CF (H) is
introduced. CF (H) of a subgraph H of G is the total delivered
current, summed over all paths from source s to target t that
belong to H. Here, we select the path that delivers the most
current flow. In the case of several paths that deliver the
same current flow we prefer those where the ratio between
the current flow (the flow of information) between source
and target, and the number of nodes along the path is lower.
This is, given two paths with the same current flow value,
the path that provides a stronger relation between source and
target is the path with a higher number of nodes in it. In our
example, we prefer path A → B → C → D → E over path
A → C → D → E. This is due to the fact that the same
amount of information (or resources) is flowing between the
two paths, taking into account the fact that the longest path
has more chances to diverge this information to other nodes.
This does not happen, so we consider this an indication that
the flow of information along this path is stronger than along
the shortest path with the same delivered current.

Based on our results and on the activity log defined in Table
II we observe that the flow of information usually goes from A
to B, then B contacts C, C contacts D, and D contacts E. Other
approaches that do not take into account the uncertainty and
time sensitiveness of the events may conclude that the most
likely path from A to E is from A to B to E. Analyzing the
relationships between the actors we observe that there is only
one interaction between actors B and E and is almost one year
old based on the evaluation date. Also, this interaction was
rated as low importance. This is the reason why our approach
did not prefer the shortest path in lieu of the longest path that
has stronger relationships among the actors.



5

V. CONCLUSIONS

FSNGs and current flows analysis are being investigated as
an alternative approach to the extraction of information based
on activity records. A methodology for analyzing activity
records integrating the uncertainty and time sensitiveness of
the information is introduced. Also, a method for the creation
of a fuzzy social network graph is proposed. Finally, an analy-
sis of the information encoded on the graph is discussed based
on the analysis of current flows in electrical networks. Fuzzy
set theory allow us to define these characteristics based on
fuzzy linguistic variables. The evaluation of the relevancy of
the information based on a time frame is accomplished by the
means of fuzzy algebra. Current flows analysis emerges as an
alternative approach for the analysis of information/resources
flow along a network of entities. The ability to capture the
influence of all nodes involved in a network over a particular
path represents a promising avenue for the extraction of
characteristics of the social network assuming that uncertainty
and time sensitiveness are parameters of the information stored
on activity logs that cannot be ignored and must be accounted
for.
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