Analysis of Current Flows in Electrical Networks

for Error-Tolerant Graph Matching

by

Algandro Gutierrez Munoz

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science
Department of Computer Science & Engineering
College of Engineering
University of South Florida

Major Professor: Lawrence O. Hall, Ph.D.
Dmitry B. Goldgof, Ph.D.
Srinivas Katkoori, Ph.D.

Date of Approval:
November 10, 2008

Keywords: graph mining, compound matching, graph kernel, graph dataset, classifier

© Copyright 2008, Algiandro Gutierrez Munoz

DEDICATION

Every journey begins with agoal, with a hope. Thisjourney was no different for
me. What made it special was the support and encouragement of my wife Edna, my
family, and friends. To them, | would like to dedicate these pages that mark the start and
not the end of another journey for me. What made it possible was the constant advice and
academic guidance of my major professor, Dr. Lawrence O. Hall. For him, | have no
other words but to say thank you. What made it all worth it was the personal satisfaction
of ajob well done. But who made it all happened was God — Thank you Lord for all the

good opportunities and people you have crossed in my path.

ACKNOWLEDGMENTS

| would specially like to thank the company that | have been working for during
the last five years, Unisource Administrators. They supported my education and provided
me all of the necessary tools and time to be able to accomplish this goal. Many thanks to
Patrice Say, former VP of Human Resources, who was very supportive of my career
during al these years. Special thanks to Andrew Olwert 111, President and CEO of
Unisource Administrators, who has always believed in me and my work. | would also
like to thank Dr. Dmitry B. Goldgof and to Dr. Srinivas Katkoori for serving as part of

my committee.

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

ABSTRACT
CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
4.1
4.2
4.3
4.4
4.5
CHAPTER 5

5.1

5.2

5.3

5.4

CHAPTER 6

6.1

INTRODUCTION

BACKGROUND AND RELATED WORK
CURRENT FLOW ANALY SIS
CURRENT FLOW VECTORS

Group-N generation

Current flow along Group-N geodesics
Current flow under special scenarios
Current flow with nodal information
Current flow vectors similarity measure

IMPLEMENTATION DETAILS

File formats

5.1.1 Graph dataset file

5.1.2 Current flow vectors dataset file
CF-vectors' implementation

5.2.1 CF-vectors algorithm

5.2.2 CF-vectors computational complexity

CF-compar€e’ s implementation
5.3.1 CF-compar€ salgorithm

5.3.2 CF-compare s computational complexity

Additional tools

EXPERIMENTAL RESULTS

Experimental setup

13

14
16
18
20
23

24

24
24
25
26
27
32
34
35
39
39

42

42

6.1.1 Graph visual comparison experiments
6.1.2 Graph classification problem on the NCI-HIV dataset
6.2 Result evaluation and comparison

CHAPTER 7 SUMMARY AND FUTURE WORK

7.1 Summary
7.2 Future work

REFERENCES

43
54
58
62

62
63

65

Table3.1

Table4.1

Table 6.1

Table6.2

Table 6.3

Table 6.4

LIST OF TABLES
Current flow along pathsin Fig. 3.2
Group-N geodesicsfor graphin Fig. 4.1
Average number of compounds within top 30 matches
Current flow vectors results on HIV00.cfv dataset
Statistical significance of the results for HIVOO

Statistical significance of the results for HIV10

12

16

55

59

60

61

Figure2.1
Figure 3.1
Figure 3.2
Figure4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
Figure 5.2
Figure5.3
Figure5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure5.9
Figure 5.10
Figure5.11

Figure5.12

LIST OF FIGURES
Sample graph g
A sample graph to calculate current flows
A sample graph with voltages and currents
A simple graph used in Table 4.1 for Group-N generation
Graph with non-connected nodes
Current flow along path causing short-circuit
Edge weight modification based on vertex label information
Graph dataset file abstract grammar
Graph dataset file
Current flow vectors dataset file abstract grammar
Current flow vectors dataset file
CF-vectors command line
CF-vectors agorithm
Current flow calculation algorithm
CF-compare’ s command line
CF-compare’ s algorithm
CF-compare results output file
Graphs 9168, 58368, 50851, and 50848

Class countsfile

11

15

18

19

21

24

25

25

26

26

27

29

35

35

37

38

39

Figure5.13
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Figure 6.8

Graphviz' s dot file example

Graph 1899 matches at 0% and 10%

Graph 3417 matches above 0.97

Graph 629871 matches above 0.97

Graph 633892 matches above 0.97

Graphs 642970, 629789, 106563 matches

Graphs 26540, 693764, 16086, 121858 matches
Graphs 643418, 676606, 676419, 675451 matches

Graphs 673997, 671292 matches

40

47

48

49

50

51

52

53

ANALYSISOF CURRENT FLOWSIN ELECTRICAL NETWORKS
FOR ERROR-TOLERANT GRAPH MATCHING

Algandro Gutierrez Munoz
ABSTRACT

Information contained in chemical compounds, fingerprint databases, social
networks, and interactions between websites all have one thing in common: they can be
represented as graphs. The need to analyze, compare, and classify graph datasets has
become more evident over the last decade. The graph isomorphism problem is known to
belong to the NP class, and the subgraph isomorphism problem is known to be an
NP-complete problem. Several error-tolerant graph matching techniques have been
developed during the last two decades in order to overcome the computational
complexity associated with these problems. Some of these techniques rely upon similarity
measures based on the topology of the graphs. Random walks and edit distance kernels
are examples of such methods. In conjunction with learning algorithms like back-
propagation neural networks, k-nearest neighbor, and support vector machines (SVM),
these methods provide away of classifying graphs based on atraining set of labeled
instances.

Thisthesis presents a novel approach to error-tolerant graph matching based on
current flow analysis. Analysis of current flow in electrical networks is a technique that

uses the voltages and currents obtained through nodal analysis of a graph representing an

Vi

electrical circuit. Current flow analysisin electrical networks shares some interesting
connections with the number of random walks along the graph.

We propose an algorithm to calculate a similarity measure between two graphs
based on the current flows along geodesics of the same degree. This similarity measure
can be applied over large graph datasets, allowing these datasets to be compared in a
reasonable amount of time. Thisthesisinvestigates the classification potential of several
data mining algorithms based on the information extracted from a graph dataset and
represented as current flow vectors. We describe our operational prototype and evaluate

its effectiveness on the NCI-HIV dataset.

vii

CHAPTER 1
INTRODUCTION

Severa error-tolerant graph matching techniques have been developed over the
last two decades. Some of these techniques rely upon similarity measures based on the
topology of the graphs[1] [2] [3] [4] [5] [6]. Random walks and edit distance kernels are
examples of such methods that in conjunction with learning algorithms like k-nearest
neighbors, neural networks, and support vector machines (SVM) provide away of
classifying graphs based on atraining set of labeled instances.

This thesis investigates an error-tolerant graph matching technique based on
analysis of current flows in electrical networks. Error-tolerant graph matching between
two graphs is performed using a similarity measure here proposed. The similarity
measure is generated based on current flow vectors extracted from each graph. Current
flow vectors are calculated by applying current flow analysis to the graphs which are
treated as electrical circuits. Current flow vectors extracted from the graphs capture
information about the topology of the graph, information that islater used with the
similarity measure to calculate a value between 0 and 1; the greater the value, the more
similar the graphs are as defined by the similarity measure.

Thisthesisis organized as follows. In Chapter 2, we present a brief introduction
to graph theory and related approaches for graph comparison. In Chapter 3, we present
the concept of eectrical nodal analysisfor fast discovery of connection subgraphs as

1

proposed by Faloutsos et al. Nodal analysis applied to undirected graphsis at the heart of
our current flows for error-tolerant graph matching approach, and as shown by [7] [8], in
a graph where the edge wei ghts represent the conductance of the edge and vertices
represents the nodes of the circuit, the eectrical current along an edge is proportional to
the net number of times that arandom walk along the same edge will traverseit. In
Chapter 4, we present current flow analysis for the error-tolerant graph matching
approach, where several geodesics (shortest paths) are extracted from the graph using as
starting and ending points nodes of equal degree. Two sets of geodesics are then
evaluated: shortest geodesics and longest geodesics. Current flow analysisisthen
performed over the two sets of geodesicsin order to produce an n-dimensional vectorial
representation of the graph. Chapter 4 also introduces a similarity measure based on the
n-dimensional vectorial representation of the graphs generated using current flow
analysis. Thisnew similarity measureisafunction k: GxG - R, where two graphs
represented by their current flow vectors are compared to each other, and areal number
between 0 and 1 is returned as the similarity value between the two graphs. As we will
observe, this similarity measure can be used as a kernel in a support vector machine,
since k is symmetric and non-negative, it can make up a positive definite matrix [9]. In
Chapter 5, we describe the implementation details of our prototype, which consists of two
main programs. CF-vectors and CF-compare.

CF-vectorsis the program used to generate the vectorial representation of the
graphs using current flow analysis. CF-compare is the program used to compare two set
of graphs and generate a similarity value between each pair of graphs among both sets.
Other tools were developed as part of thisthesisin order to facilitate the analysis and

2

visualization of the results. These tools are: sdf2gds and gds2dot. Both of these tools are
used to transform the file format used by CF-vectors and CF-compare to a more standard
format. Chapter 6 describes the results obtained on the NCI-HIV dataset [10]. Some
examples of different chemical compounds represented as graphs, and their closest
matches are presented in order to provide a graphical comparison between them. Aswe
will show, the ability to store the graph information as a current flow vector, and later,
use this representation to find similar graphs, based on the topology, is quite useful.
Finding the best match using our similarity measure against a database of more than
40,000 compounds takes a few seconds, and once the current flow vectors have been
calculated and stored there is no need to calculate them again as they will remain
unchanged for each graph. Chapter 7 presents a summary and ideas for future research

using the technique here proposed.

CHAPTER 2
BACKGROUND AND RELATED WORK

Graphs offer a powerful way to represent structured data. Several applications
where graph representation is used like shape analysis, character recognition, and
chemical compound matching take advantage of the benefits of graph databases. The
ability to compare two graphs represents an important contribution to the area of graph
mining. Graph matching usually refers to comparing the structural similarity between two
or more graphs. Graph matching approaches are mainly divided in two classes: exact
graph matching and error-tolerant graph matching [11].

Let us define agraph g as a four-tuple g = (V,E,u,v), where V denotes afinite set
of nodes or vertices, E denotes afinite set of edges, where E [0V XV , u denotes a node
labeling function, and v denotes an edge labeling function. Fig. 2.1 shows sample graph g

with its correspondent four-tuple.

VvV ={1,2,3,4}
E={(12),(13),(23), (34), (4.3)}

N
I

x=1l1y=2 1
x=1 C
x=2 O X=ly=3 1
a 1 u(x) = - V(X,y)=1x=2,y=3 3
X=3 H x=3y=4 1
x=4 N e
° x=4y=3 1

Figure 2.1 Samplegraph g

4

Graphs can be classified into two main categories. directed and undirected.
Undirected graphs are those where for every edge (u,v) JE = (v,u) O E. Directed
graphs on the contrary are those where thereis at |east one edge (u,v) O E such that
(v,u) OE . A subgraph gl of g2 isagraph such asthat for graph g1 = (V1, E1, ul, vl)
and g2 = (V2, E2, u2, v2), graph g1 [0 g2. A graph isasubset of another graph if it
posses the following characteristics:

1. vidvz2

2. El=E2n (V1xV])

3. ul(u) =u2(u) Ou Owv1

4. Vvi(u,v) =v2(u,v) O(u,v) OE1
Based on the definitions of graph and subgraph we can now define exact and error-
tolerant graph matching. In exact graph matching the objective isto identify whether all
vertices, edges, node labels, and edge labels are identical between two graphs. Thisis
called graph isomorphism. The most common approach to check graph isomorphismisto
traverse a search tree checking all node-to-node correspondences. The computational
complexity of the search tree procedure is exponential in the number of nodes of both
graphs[11]. A similar problem for graph isomorphism is the problem of finding subgraph
isomorphism. In other words, to detect if a smaller graph is part of a bigger graph. A
subgraph isomorphism between graphs gl and g2 exists if the larger graph can be
transformed into the smaller graph by removing some nodes and edges. The subgraph

isomorphism problem belongs to the NP-complete class of computation.

Dueto its computational complexity the exact graph matching problem is not
implemented in real scenarios, the error-tolerant graph matching problem is more suitable
for larger graph databases and graphs with a high number of vertices. Several approaches
have been proposed for the error-tolerant graph matching problem [1] [2] [3] [4] [5] [6].
Some of these approaches are based on similarity measures like the graph edit distance,
where alist of edit operationsis performed in order to transform one graph into another.
Edit operations can be edge edit operations or vertex edit operations. An example of an
edit vertex operation is to add or remove a node from one graph in order to find a
correspondence on the other graph. The concept of graph edit distanceis then presented
asthe cost of the edit path. Each edit operation can be assigned a specific value. For
example, removing a vertex could be more costly than changing an edge labdl. Other
error-tolerant graph matching approaches include walk-based graph kernels [20]. Walk-
based kernels are defined for directed labeled graphs. The process of mapping a graph to
multisets of label sequences, or walks, iswhat is known as awalk kernel. Cycle pattern
kernels (CPK) [20] are based on the idea of mapping graphs into a selected group of
cycles and trees. Another approach isto map a graph to a set of frequent subgraphs (FSG)
previously indentified from the training dataset [17] [18].

The following chapters will introduce current flow analysis for error-tolerant
graph matching as an approach in which graphs are transformed into a vector of current
flows over particular paths of the graph in order to compare the current flow vectors

between graphs of a graph database.

CHAPTER 3
CURRENT FLOW ANALYSIS

The flow of electrical currentsin a network of resistors can be measured between
any two nodes in an electrical network. Current flow analysis combines Ohm’s law and
Kirchhoff’s current law to determine the voltage values at each node along the electric
circuit. Nodal voltage analysis of eectrical circuitsis performed by solving a system of
equations in which the unknowns are the voltages at different nodes in the circuit.
Current flow along the various branches of the circuit can be determined based on the
voltages at each node in the circuit. The analysis of the current flows between specific
pairs of nodesin agraph is at the heart of our error-tolerant graph matching technique.

In [7] an approach related to electrical currentsin a network of resistors was
proposed. This approach tries to solve the problem of finding a connection subgraph that
can deliver as many units of electrical current as possible. For this purpose, a graph

G =(V,E) istreated as an electrical network, where edge weights represent conductance
(C(u, v) represents the conductance between nodes u and v), and the vertices represent

the nodes of the electrical circuit (V (u) represents the voltage at node). The voltages at

each node of the circuit are calculated by combining Ohm's law and Kirchhoff's current

law.

Ou,v: 1 (u,v)=Clu,v)V(u)-V(v)) (1)

Ov # s,t:ZI(u,v)=0 2

Having s as the source node, and t as the target node, equations (1) and (2) determine the

voltages and currents as the solution to the following linear system:

V()= gv—(vc)%?’v) Qu# st 3
V(s)=1 V(t)=0 (4)
C(u)=>>c(uv) (5)

\

solving (3) with boundary conditions (4) will determine the voltages at each node. C(u)

represents the total conductance of nodeu, thisis, the sum of all edge weights adjacent to

u.

Oncethe current, | (u, v) , values are available, the current along a particular path:

I'(P), P={s,....} isdefined asthe pro-rated current along that path from source to

target.
I(s,u)=1(s,u) (6)

I(s=u,,....u)=1(s=u,...,u_,) ll Eli'&j')))

L (U)= > 1{u,v) ©)

where |, (u) representsthetotal current leaving a node, which is equal to the sum of all
currents leaving the node in a downhill stream, where a downhill stream from node u to
node v means that voltage at node u is higher than voltage at node v, V (u) >V/(v).

Since the idea of the approach presented in [7] isto find the best connection
subgraph, the concept of captured flow CF(H) isintroduced. CF(H) of asubgraph H of
Gisthetotal delivered current, summed over all paths from source sto target t that
belong to H. For the purpose of thisthesis, we are only considering single pathsin G, not
subgraphs of it. The concept of delivered current over a path, I (P), is very important in
the calculation of the current flow vectors in the next chapter.

The following example illustrates the process of calculating the voltages, currents,

and current flows of graph in Fig. 3.1 which can be treated as an electrical circuit.

Figure 3.1 A sample graph to calculate current flows
Voltages at the source and target nodes have been fixed to 1 and O respectively,
V(s) =1, V(t) =0. Any vertex of degree 1, this means having only one edge connected to
the vertex, excluding source and target nodes will have a voltage of 0. Thisis equivalent
to aground node in an electrical circuit; therefore a voltage of 0 is assigned to represent a
sink nodein the circuit. Once the voltages for source node and ground nodes have been

specified we can proceed to solve a system of linear equations with n variables, wheren

9

isequal to the total number of verticesin the graph excluding the source and ground
nodes, in thiscasenis 3. This system can be reduced to solving an eigenvector

calculation of the form:

A B
{ }v:v ©

A= {aj =ﬂ} (10)

W;

where matrix A represents the relationship between the nodes based on their connection
weights, B represents the boundary conditions for s, t, and other ground nodes, and | is
the identity matrix of sizenxn. The solution to the system of equations represents the

voltages at each of the n nodes.

izwai Wap Wae -w -3 2 0 -1
W, —D Wy W, V=|-wy =2 -7 1\V=|-1 (11)
Wca ch _chi _WSC 0 1 -3 0
0.54
V=/031|=V(a)=0.54, V(b)=0.31 V(c) =0.10 (12)
0.10

With the voltages for each node we can now calculate the current for each edge
using equation (1). Once we have calculated the current along each edge, we need to
calculate the current flow along each possible path between source and target. Thisis

done using equations (6) and (7). The current flow is a pro-rated amount from source to

10

target based on the total current along each node in the path and the total current leaving

each of the nodes along the path.
Now we proceed to calculate the current along each path between s and t. Based

on the current flow only downhill paths can be calculated. A downhill path from node u
to node v means that voltage at node u is higher than voltage at node v, V(u) >V (v):
I(s,a) = C(s,a)(V(s) -V (a)) =1x (1- 0.54) = 0.46
I (s,b) = C(s,b)(V(s) — V(b)) =1x (1- 0.31) = 0.69
I (a,b) = C(a,b)(V(a) -V (b)) = 2x(0.54- 0.31) = 0.46
I (b,c) = C(b,c)(V (b) -V (c)) =1x(0.31-0.10) = 0.21)
I (b,t) = C(b,t)(V(b) -V(t)) = 3% (0.31-0) = 0.93

(c,t) = C(c,)(V(c) -V (1)) = 2% (0.10- 0) = 0.20

the following figure shows all voltages and currents, as well as the flow of the current

based on the voltages.

V(a) = 0.54 V(c) =0.10

V(b) = 0.31

V(s)=1 V(=0

Figure 3.2 A sample graph with voltages and currents

11

Having the values of all currents along each edge we can proceed to calculate the
current along a particular path, I (P), P ={s,...,t . Using equations (7) and (8) the pro-
rated amount of current that flows from node sto nodett is calculated. Table 3.1 shows

the values of the current flow along different paths from sto t:

Table 3.1 Current flow along pathsin Fig. 3.2

sobot O.GQX&:O.SG

0.21+0.93

0.21 0.20

sobocot 0.69x X =0.13

0.21+093 0.20
ssa-bot 0.46 % 0'46>< 0.93 =0.38

046 0.21+0.93
s-a-bocot 0.46><0'46>< 0.21 X 0.20 =0.08

046 0.21+0.93 0.20

as we can observe from Table 3.1 paths — b — t isthe onethat ddiversthe most current
from sto t. Aswe mentioned before, in [7], the concept of captured flow isintroduced to
denote the current flow along selected paths of graph G forming subgraph H, CF(H)
denotes the sum of all the current flows along each path from H. The idea behind the
captured flow in subgraph H was to identify the subgraph that will deliver the most
current relative to the number of nodes being added to H. For our purposes we will not
consider this concept as we are interested in current flows along several single paths

depending on the characteristics of the source and target nodes.

12

CHAPTER 4
CURRENT FLOW VECTORS
Current flow analysis along the shortest and longest geodesics (shortest paths) of
agraph as presented in [12], provides a method to describe the graph structure such that
the information needed to represent the graph is reduced significantly compared to the
original size of the graph representation. Once a graph has been described using current
flow analysis, its new representation is an n-dimensional vector that stores the current

flow along geodesics of different node degrees.

G=(V,E) A(G)=maxdeg(v) (14)
f:G - R%(©) 2A(G)isan upper bound. (15)

As we can observe from (15), the current flow vector is represented by
function f , which transforms the input graph G into a ZA(G) -dimensional vector, where
A(G) represents the highest node degree among al vertices in the graph. The actual
dimension of the vector is twice the size of the maximum degree; thisis due to the
analysis of the current flow along shortest and longest geodesics of the graph. The size of
the vector when based on the highest vertex degree actually represents an upper bound of
the final vector size; thisis because for a given graph, some geodesics for a specific node

degree may not exist resulting in a current flow vector of lower dimensionality.

13

In the following sections we will describe the steps needed to perform the

transformation from a graph representationG = (V, E), to a vectorial representation

G = R". Section 4.1 describes the process of geodesic selection, also called Group-N
generation. In Section 4.2, we describe the steps needed to calculate the current flow
along each of the selected geodesics. Nodal analysisis used as shown in Chapter 3in

order to calculate the pro-rated current along geodesics.

4.1 Group-N generation

Current flow analysis requires the selection of voltage source s and target ground t
nodes. Once the selection of these nodes has been done, boundary conditions as described
in (4) can be applied to solve the linear system in (3) to find the voltages and currents of
the circuit. Path selection is made using shortest paths (geodesics) along the graph.
Different source and target nodes will provide different paths, hence different current
flows along each path. Each current flow along a particular path will capture different
characteristics of the topology of the graph as different connections and flows along each
path will differ from each other. Theideathen isto select a representative number of
paths that will capture as much information as possible about the topology of the graph
using current flows. To this end, two different sets of paths are defined: shortest
geodesics and longest geodesics.

Since different graphs will render different geodesics, we need away to pair them
when comparing them. A good way to describe the characteristics of a geodesic is based
on the node degree of its source and target nodes. In order to provide a standard

framework of comparison between current flows along geodesics of different graphs, the
14

selection of geodesicsis limited to those in which the source and target nodes have the
same node degree.

The concept Group-N encompasses the group of geodesics that share the same
degree N in their source and target nodes. Each Group-N will have two sets of geodesics:
shortest geodesics and longest geodesics. As noted before, by selecting a representative
number of paths along the graph we are providing away to capture as much information
as possible about the topology of the graph. Fig. 4.1 and Table 4.1 provide an example of

agraph and its corresponding Group-N shortest and longest geodesics.

Figure4.1 A smple graph used in Table 4.1 for Group-N generation

Geodesicsin Group-1 are those where their source and target nodes are of degree
1, in this case, nodes 8 and 10. The same applies for other Group-Ns. As we can see,
multiple geodesics of the same length of the same group-N can be generated using
different source and target nodes. Current flows along these geodesics are averaged to
produce a single current flow value for each group-N set. For example, Group-2 shortest

geodesics are (1,2) and (1,3), both with the same path length; when calculating the

15

current flow for Group-2, both current flows are calculated, current flow between node 1
and node 2 and current flow between node 1 and node 3. The resulting current flow
values are then averaged to produce a single value for Group-2.

Table 4.1 Group-N geodesicsfor graphin Fig. 4.1

Group-N Shortest Geodesic L ongest Geodesic

Group-1 (8,10) (8,10
Group-2 (1,2), (1,3) 1,7)
Group-3 (4,5), (4,9), (5,6) (4,6), (5,9), (6,9)

As mentioned before, the selection of the geodesics is done using a single-source
shortest path algorithm from source to target. In this case we are using Dijkstra's
algorithm [13]. It isimportant to note here that edge weights in the graph represent the
cost (or resistance) of going from one node to another. This annotation isimportant in the
sense that while calculating the current flows using equations (1), (2), (3), and (4) the
value of the edge wei ghts represent the conductance between the nodes rather than
resistance. Therefore a conductance equal to the reciprocal of the edge weight is used

while performing the nodal analysis.

4.2 Current flow along Group-N geodesics

Now that we have described how to generate the Group-N sets for a given graph,
we can proceed with the current flow calculation along each of the geodesics. Calculating
currents is done using nodal analysis as described in Chapter 3. Each geodesic can be
described as a path from sourceto target. P = (s,...,t) . As noted by equation (4) voltage

16

values for source and target nodes are initialized toV(s) =1, V(t) = 0. In this scenario, the
source will act as the voltage source and the target as a ground. In the event the graph has
some nodes of degree 1 that are neither the source nor the target, these nodes are
considered to be grounds as well, hence the voltage at these nodesis V(u) = 0.

Once the voltages for source nodes and ground nodes have been specified we can
proceed to solve a system of linear equations with n variables, where n is equal to the
total number of vertices of the graph minus source and ground nodes. The solution to the
system of equations represents the voltages at each of the n nodes. With the voltages for
each node, we can now calculate the current for each edge using equation (1). Once we
have calculated the current along each edge, we need to calculate the current flow along
the geodesic. Thisis done using equations (6) and (7). The current flow is a pro-rated
amount from source to target based on the total current along each node in the path and
the total current leaving each of the nodes along the path. Having calculated the current
flow along each geodesic we can calculate the current flow for each Group-N set. For
each set (shortest and longest) we average the current of all geodesics of the same degree.
Thisis, for Group-Ns with more than one geodesic of the same length we calculate an
average current flow. Having calculated all of the Group-Ns current flows for shortest

and longest geodesics, we can produce our vectorial representation of graph G:

G=R® D= max deg(GroupN) (16)

nOGroupN
the vectorial representation of the graph is defined by:

G =|sN,,..., N, LN,,...,LN, | (17)

17

where SN, isthe average current flow value for the shortest geodesic(s) from Group-i.
Similar, LN, isthe average current flow value for the longest geodesic(s) from Group-i.

If a particular degree is not represented in the Group-Ns, a value of 0 is assigned to the

current flow for that group.

4.3 Current flow under special scenarios

Certain considerations need to be taken into account in order to assure that nodal
analysis will yield useful results. For digoint graph representations where certain sections
of the graph are not connected to each other, we need to exclude the nodes where there is
no path from the source to the node. This can be accomplished by using BFS (Breath-
First Search) [13]. Thiswill prevent calculating currents along non-existing connections
in the circuit. Fig. 4.2 shows a graph where nodes 0S, 10, 20, and 40 are not connected
to the rest of the graph. By running BFS to determine if there is a path from source to any

of these nodes the algorithm can decide whether or not to calculate the current flow.

Figure 4.2 Graph with non-connected nodes

18

On the other hand, certain topology configurations of a graph, in particular where
too many ground nodes (nodes of degree 1) are present, and closed rings (cycles) provide
alternative routes from the current to flow from source to target avoiding the extra ground
nodes, display the potential for an odd distribution of voltages along the geodesic; i.e.
voltages along the nodes of the path will not always be in a descending configuration
from source to target, causing the current flow calculation to yield negative results. To
avoid this scenario, we opted to exclude any node pair that causes this behavior from the
pro-rated calculation of the current flow as presented in equation (7). This situation is

analogous to short-circuiting an electrical network.

Figure 4.3 Current flow along path causing short-circuit

19

Fig. 4.3 shows an example of a scenario where a path from source node s =210

to target node t =13N , flowsin a downhill stream (as defined in Chapter 3) until it
reaches node 9C. Since node 9C is connected to a ground node (degree of node 120is 1),
the current flows down to this node. Current also flows through a closed ring to reach
target node 13N through node 8C. As we can see, since the current flows from 8C to 9C,
if wetry to calculate the current along the path (grayed out nodes), we would get negative
results. As noted, when a scenario like this one arises, we opted for ignoring the portion

of the current between nodes 8C and 9C, and short-circuit the network from 4C to 8C.

44 Current flow with nodal infor mation

So far the information about the graph being captured using current flow analysis
has been limited to shortest and longest geodesi cs between nodes of same degree. Current
flow analysis has only used edge weight information as a conductance equal to the
reciprocal of the edge weight to generate the current flow vectors. No information about
the vertex labels has been included in any of the calculations. An extension to the
technique investigated by Faloutsos et al. in [7] is here proposed. In order to include
nodal information, thisis, to take into account the label associated with each vertex, we
perform an edge weight modification to each edge of the graph based on the vertices that
such edge connects. Let us say that for the graph on the left of Fig. 4.4 we want to modify
the edge weights based on the vertex labels. We can arbitrarily assign to each label a

different value. For example, label C =1, label O = 0.5, label H = 0.8, and label N = 0.3.

20

1+1+0.8

H

1+0.8+0.
1+1+1
1+0.3+0.

Figure 4.4 Edge weight modification based on vertex label information

1+08+03

As we can observe for the graph on the right of Fig. 4.4 all edge weights are now
different. Each edge weight is modified depending upon what vertices it was connecting.
By modifying the edge weights based on the vertex information we are trying to
incorporate into the current flow calculation some vertex information. Since the current
flow calculation is based entirely on the edge weights treated as a network of resistors, by
modifying each edge weight we are modifying the current flow along each path. Now the
guestion is how to assign a numeric value to each vertex label? What happensif there are
alarge number of vertex labels? How big or how small should the values added to the
edge weights be compared to the original edge weights? All these questions are better
answered based on the characteristics of the graphs to be compared. For example, in our
case we will be working with the NCI-HIV dataset. This dataset contains 42,689
chemical compounds that are represented as graphs. The vertex labels are e ements of the
periodic table; in other words, the number of labels relative small. For our purposes we
opted for assigning a value to each vertex based on the frequency of the element in the
whole dataset. Elements such as carbon (C), oxygen (O), and nitrogen (N) were the most
common; elements such as aluminum (Al) were less common in the whole dataset. For

elements with high frequency the value assigned was lower compared to those with less
21

frequency. The idea hereis that the most common elements will not provide as distinctive
characteristics about the graph topology as those that are more unique. The proportion of
the edge weight to the smallest and/or to the largest original edge weight is also important
as we do not want the information about the vertices make the original edge weight less
important. A percentage of the smallest original edge weight is recommended. For
example, if the original edge weightsare 1, 2, and 3; the least common vertex label will
be assigned a percentage of the smaller original edge weight, in thiscase 1. The
percentage can be a 10%. For example, the value to be added to edges that connect
vertices with the least common label will be of 0.1. This value will be smaller for the next
least common label up to the point where the addition to the edge weight will be O (the
most common label).

Other approaches to include vertex label information into the current flow
calculation are also valid. For example, in the case of the NCI-HIV dataset, instead of
using the frequency of the labels in the dataset we could have decided to assign similar
values to elements with similar chemical characteristics. Other examples of incorporating
vertex label information into the current flow calculation will be for computer images
represented as graphs; where a color segmentation algorithm can be performed on the
image to segregate it into larger sections of similar color that then will be connected with
each other; thiswill construct a graph of color sections. The vertex label for each section
will be the color associated with it. Similar colors will be then assigned similar numeric
label values; thiswill allow the current flow analysis to incorporate color information

while comparing images represented as graphs.

22

45 Current flow vectors similarity measure
The representation of the graph topology as an n-dimensional vector allows usto
define a similarity measure between two graphs as a numeric value in the range of [0..1],

k:GxG - R.Wedefinethe similarity measure k between graphs G1 and G2 as:

— 2 |G]-[SNd]_Gj:SNd]|
52 G, [+GA, 1o
_ & |GILN, |-G LN, |
“= 2 GIN, 67N, 9
_, S+L
k(GLG2)=1 5 (20)
D = max(max deg(G1), max deg(G2)) (21)

the value of kisarea number in [0..1], where the closer the value isto 1, the more
similarities are shared between the current flows vector of both graphs. Equation (20) can
be described as computing the differences between each pair of Group-N geodesics from
graphs G1 and G2. The first summation S compares the shortest geodesi cs from both
graphs, while the second summation L compares the longest geodesics from both graphs.
As mentioned before, function k can be used as a graph kernel. A positive definite Gram
matrix K can be constructed from function k, given that k is always positive and
symmetric the function k can be referred as positive definite (pd) kernel [9].

In the following chapter we will present the implementation details of the
similarity measure k from the current flow vector creation process to the error-tolerant

graph matching approach using the current flow vectors.

23

CHAPTER 5
IMPLEMENTATION DETAILS
During the implementation of our prototype we devel oped two main programs:
CF-vectors and CF-compare. CF-vectors is the program used to generate the vectorial
representation of the graphs using current flow analysis as described in Chapter 4;
CF-compare is the program used to compare two set of graphs and generate a similarity

value between each pair of graphs among both sets as described in Section 4.5.

51 Fileformats

During the course of our development we defined two file formats to be used by
our programs; these are: graph dataset file (.gds) and current flow vectors dataset file
(.cfv).
5.1.1 Graph dataset file

The graph dataset file stores a set of directed graphs as described in the next

abstract grammar:

Graph Dataset: Graph+
Graph: BEG N graph_nane graph_cl ass
vertices
edges
END
vertices: {v vertex_id vertex_| abel }+
edges: {e fromto edge_wei ght}*
Figure 5.1 Graph dataset file abstract grammar

An example of a.gdsfile representing graph G1 is presented in Fig. 5.2.

24

@
8

OPRAR~NOOWAPRPWWNNIOZIOOZ

M®D®D®DdDDdDD®D®D®D®DOODODK<<<<<<<<<W
G WONPARPNFPWERPRE

ON~NOR_RP_APWWNRERPRPNOORMWDNEQ

Graph G1 — Class: CA

Z

Figure 5.2 Graph dataset file

5.1.2 Current flow vector s dataset file
The current flow vectors dataset file stores the vectorial representation of the

graphs as described in the next abstract grammar:

Graph Dataset: G aph+

Graph: graph_nanme graph_class ([S+ L*] | [S* L+])
S: S:degree:current _fl ow val ue

L: L:degree:current_flow val ue

Figure 5.3 Current flow vectors dataset file abstract grammar
The current flow vectors dataset format allows for a sparse representation of the
current flows. As noted before, not all Group-N degrees will be present in a graph. Only
those degrees present in the graph need to be stored in the .cfv files. Fig. 5.4 shows a .cfv

file.

25

Graph | Class Group-N Shortest Geodesic | Longest Geodesic
Gl CM Group-1 0.85467 0.85467
Gl CM Group-3 0.44655 0.78462
G2 CA Group-2 0.34677 0.56677
G2 CA Group-3 0.35477 0.97887
G3 Cl Group-5 0.67878 0.00779

Group-Nsfor graphs G1, G2, and G3

e

Gl CM S:1:0.85467 S: 3:0.44655 L:1:0.85467 L:3:0.78462
& CA S:2:0.34677 S:3:0.35477 L:2:0.56677 L:3:0.97887
&3 Cl S:5:0.67878 L:5:0.00779

Figure 5.4 Current flow vectors dataset file

5.2 CF-vectors implementation

CF-vectors was implemented on ANSI C++ using the Template Numerical
Toolkit (TNT), which is a collection of interfaces and reference implementations of
numerical objects useful for scientific computing in C++ [14]. CF-vectors receives as a

parameter a .gds file, and returns as output a .cfv file:

$> cf-vectors --help
usage: cf-vectors <inputfile.gds>

Figure 5.5 CF-vectors command line
Once the trandation from the graph representation to the vectorial representation
of the graph has been performed using CF-vectors, there is no need to perform this step
again on the same dataset. The following section shows a pseudocode version of the CF-

Vectors program.

26

5.2.1 CF-vectors algorithm

1| CF-vectors(gdsfile) {

2

3 /1 array used to store all graphs

4 array G aphbDat aset;

5

6 /] array that stores current flows vectors

7 array TenpCurrents;

8

9 /] associative array that holds the counts for each vertex | abel
10 array Label Counts;

11

12 /1 global variable that stores the mnimumresistance value in the
13 /1 whol e dat aset

14 doubl e M nResi st ance,;

15

16 /1 output file

17 file cfvfile;

18

19 For each graph in gdsfile {

20

21 /1 extract each graph fromgdsfile and add it to the dataset
22 G aphDat aset . add(gr aph) ;

23

24 /1 count the vertex |abels and store the val ues

25 /] for exanple, if graph has 3 vertices with |abel "C

26 /1 and 1 with [abel "N', Label Counts will add to the

27 // overall count of C, 3, and to overall N count, 1.

28 Label Count s. count _| abel s(graph);

29

30 [/ find the m nimum resistance value in the graph

31 /1 and keep it if it is |lower than the current

32 /1 M nResi stance val ue for the whol e dataset

33 i f graph. mn_edge_wei ght() < M nResistance {

34 M nResi stance = graph. nmi n_edge_wei ght ()

35 } /1 endif

36

37 } // end For each

38

39 /1 Order the |abel counts from nost common to | east conmon.
40 Label Count s. ReverseSort ();

41

42 /1 Find the anmobunt to be added per each vertex | abel to the
43 /1 edge wei ghts as described in section 4.4.

44 doubl e Resi stancel ncrenent;

45 Resi st ancel ncrement = M nResistance * 0.1 / Label Counts. size();
46

47

48 /1 the nore common the | abel, the | ess resistance increnment
49 For i = 1 to Label Counts.size() {

50 Label Counts[i].resistance_increment = Resistancel ncrenent
51 }

52

53

54 /1l Get the current flow vector for each graph

55 For each graph in G aphDataset {

56

Figure 5.6 CF-vectors' algorithm

27

57 TempCurrents = graph. Get Current Fl ows() ;

59 /'l wite current flow vector to output
60 cfvfile.wite(TenpCurrents);

62 }

64 return cfvfile;

Figure 5.6 (continued)

The CF-vectors' algorithm receives as a parameter the graph dataset file, line 1. In
line 19, each graph inside the graph dataset is processed in order to extract the current
flow vector and store it in the output file. In line 28, a global variable used to store the
frequency of each vertex labdl is updated; this section relates to the inclusion of nodal
information into the current flow calculation. In lines 33-35 another global variableis
modified, the MinResistance variable is used to store the lowest edge weight valuein the
whole dataset. As described in Section 4.4, the approach to include nodal information
into the current flow calculation is to use a percentage of the lowest edge weight value to
add to each edge weight depending on the vertex labels it connects. In this case we are
using a 10% of the minimum resistance value. Lines 40-51 calculate the appropriate
resistance increment value for each vertex label depending on its frequency. The most
common label will be at the top of the LabelCounts array after this has been sorted in
reverse order, line 40. Starting with the most common label the resistance increment
value increases in a proportion equal to the number of labels in the dataset. For example,
if there are only 20 different labels in the whole dataset, and the minimum edge weight is

1, then each increment will be 0.1/20 greater than the previous one; with the least

28

common label getting a resistance increment of 0.1. The following algorithm shows the

current flow calculation that is donein lines 55-62.

1 | graph::GetCurrentFl ows() {

2

3 array Geodesics;

4 vertex source;

5 vertex target;

6 array CachedCF;

7 array G oupNcurrents;

8 array |;

9 array |out;

10 doubl e Itenp;

11

12 /1 Using Dijkstra' s algorithmto find shortest path between all
13 /1 Group-N pairs of the graph. The Geodesics variable stores both
14 /1l shortest and | ongest geodesics of the graph for each

15 /'l G oup-N

16 Geodesics = this. Get Geodesics();

17

18 /1 Using the gl obal Label Counts val ues nodify the edge weights prior to
19 [l calculating the current flows

20 For each v in this.vertices {

21 For each e in v.adjency_list {

22 e.wei ght += Label Counts[v. | abel].resistance_increnent;

23 }

24 }

25

26 /1l Calculate the current flows for all geodesics

27 For each x (shortest or |ongest) geodesic in CGeodesics {

28 For each group_i in Geodesics. GoupN {

29 For each g in group_i.Geodesics {

30

31 /1 set source and target nodes

32 source = g.first_vertex;

33 target = g.last_vertex;

34

35 /1 check to see if the current flow between

36 /'l (source,target) has not been cal cul ated

37 i f CachedCF[(source,target)] is NULL {

38

39 /1 Find the voltages for the circuit having source and target
40 /1 nodes the first and |last vertices of the geodesic.

41 /1 This function solves the system of equations as descri bed
42 /1 on Chapter 3.

43 vol t ages = Fi ndVol t ages(source,target);

44

45 /1 calculate the currents using the voltages ONLY for downhill
46 /1l current flows as defined in Chapter 3.

47 [l Current is equal to |l =(V(u) - V(v)) / R(u,v)

48

49 For each e(u,v) in this.adjency_list {

50 I[u,v] = (voltages[u] - voltages[v]) / edge(u,vV).weight;
51

52 /1 Add each current that goes out of u

53 /]l to the lout figure

Figure 5.7 Current flow calculation algorithm

29

54 lout[u] += I[u,Vv];
56 }

58 /1 calculate the pro-rated current through he geodesic (s,..., t)
59 ltemp = 1;

60 For each nodepair(u,v) in g {

61 Itemp *= I[(u,v)]/lout[u];

62 }

64 /]l store current flow val ue between source and target
65 CachedCF[(source,target)] = ltenp;
66 } /1 end-if

68 /] add the CF to the result groupN (shortest or |ongest)
69 G oupNcurrent s[x, group_i].add(CachedCF[(source, target)]);

71 } // end For each g

76 if (GoupNcurrents[x,group_i].size() > 1) {
77 G oupNcurrents[x,group_i] /= GoupNcurrents[x,group_i].size();
78 }

82| }

84 return G oupNcurrents;
85 |}

Figure 5.7 (continued)

The GetCurrentFlows() function isin charge of generating the current flow vector
based on the current graph. In line 16, the shortest and longest geodesics of the graphs are
found using Dijkstra’ s algorithm. Each geodesic belongs to a particular Group-N. For
example, if agraph has 2 vertices, u and v, of the same degree, there could possibly be
more than one path between those 2 vertices. The GetGeodesics() function in line 16 will
find all the shortest paths between u and v and it then will keep one shortest path with the
minimum path length (shortest geodesic), and it will keep the shortest path with the
maximum path length (longest geodesic). This process will be applied to all Group-N
pairs. In the event more than 1 pair of the same degree (same Group-N) exists, then an

average for all the shortest geodesics and an average for all the longest geodesics will be

30

calculated, Lines 76-78. Lines 26-85 depict the process to go through all Group-Ns,
shortest and longest, and all geodesics for the current graph and the calculation of the
current flow for each of the Group-N groups. In lines 32-33 the source and target nodes
are selected. These are the start and ending nodes of each geodesic. Since a geodesic
could be both the shortest and longest geodesic at the same time, a cache vector is
implemented to avoid calculating the same current flow for the same node-pair. Line 37
verifies whether the current flow for a given pair has been already calculated. In line 43,
the function FindV oltages(source,target) calculates all the voltages for each node in the
graph. This function solves the system of equations using a LU-decomposition after the
initial voltage values for source, target, and ground nodes have been specified. In order to
prevent trying to calculate voltages for non-connected vertices (in the case of digoint
graphs), BFS (breath-first-search) is used to determine if avertex is connected through
any path to the source node of the circuit.

Once all voltages have been calculated, we can proceed to calculate the current
value for each edge. Lines 50-56 calculate the current using Ohm’s law. The value for
lout(u), thisisthetotal current that exits from node u is calculated in line 54. Once al
currents have been calculated we can find the pro-rated current along the geodesic; thisis
donein lines 59-62. In line 69, the GroupNcurrents variable is modified to add the pro-
rated current amount calculated in lines 59-62; each current flow belongs to a particular
Group-N and shortest or longest set. In lines 76-78, once all current flows have been
calculated, an average of the current flows for each Group-N shortest, and Group-N
longest set is calculated if there is more than 1 current flow per set. The output of the
function isthe current flows for all Group-N sets of the current graph.

31

5.2.2 CF-vectors computational complexity

In order to analyze the computational complexity of the CF-vectors' algorithm we
will assume that the graph dataset file contains only one graph. The label count and
resistance increment sections, lines 28-51, are dominated by the sorting of the labels by
frequency. Line 28, the label count isdonein O(V), while the resistance increment
calculated in lines 33-35 isdone in O(E). The sorting of the labels based on their
frequency isdonein O(V log(V)). The modification of the resistance increment valuesis
donein O(V). We can say that the section prior to the calculation of the current flowsis
donein O((2V + E) + V log(V)).

The current flows calculation is much more computationally expensive compared
to the prior section. Starting with the discovery of the geodesics and Group-Nsin line 16
of the GetCurrentFlows() function. As described on the previous section, in order to find
all geodesics, Group-Ns must be identified first. The process of identifying Group-Ns
requires evaluating all possible paths between node pairs of the same degree. For
example, for a graph with 6 nodes of degree 3 the number of paths that can be form with

between two nodes of degree 3, one as the source and the one as the target, is:

ny _ nl _nx(n-1)
LZJ_Z!X(n—Z)!_ 2 (22)
6 6 _6x(6-1) _
[zj_zu(e—z)!' > P 23

The number of paths to be evaluated for each node degreeis on the order of n*/2 where
n isthe number of nodes of a particular degree. The worst case scenario given a particular

graph structure isfor afully connected graph where a path exists between every single

32

pair of nodes. In this case, the number of paths to be evaluated is on the order of V?/2.
For each of the Group-N node-pairs both shortest and longest geodesics must be found.
This process is being done using Dijkstra’ s algorithm which can be done in O((E+V)

log(V)) using a priority queue [13]. The whole process of finding all geodesics takes
approximately O((V? x (E +V)log(V))/2).
Once all geodesics have been found, the process of calculating voltages and

currentsis on the order of O(V?) due to the LU- decomposition to find the voltages. For

sparse graphs, the voltage calculation can be improved to O(E) operations per iterations,
and the number of iterations depends on the gap between both the largest and second

largest eigenvalues [7]. The section that calculates the current flows can be said to be on

the order of O((V 2x(E+V)log(V))/ 2) and the whole CF-vectors algorithm is on the

order of O((2V +E) +V log(V) + ((V? x(E +V)log(V))/2) +V?) . Since we assumed that
the graph dataset will have only 1 graph, the total computational complexity of
processing a full graph dataset will increase proportional to the number of graphsin the
dataset. We can observe that the computational complexity of the algorithm is relatively
high, but we must keep in mind that this step must be done only once for each graph.
Once a graph has been transformed from its graph representation to a vectorial
representation, the current flow vector that represents the graph will never change and it
can be used in any future comparison of the graph against another current flow vector
representing another graph.

It is worth mentioning that the size of the graphsin the NCI-HIV dataset is

relatively small, with the largest graph having only 214 nodes.

33

5.3 CF-compare simplementation

CF-compare was implemented on ANSI C++. CF-compare provides several
options to compare two .cfv files. The two datasets to be compared are called: query
dataset, and base dataset. The query dataset is usually a smaller dataset that we want to
compare against our base dataset. Since the number of results that can be obtained from
comparing the query dataset to the base dataset is equal to the number of graphsin the
guery dataset multiplied by the number of graphsin the base dataset, CF-compare
provides the ability to limit the number of results to avoid generating huge output files.
These options are -n and -t. Option -n allows the user to define the top N resultsto be
generated. Option -t allows the user to define avalue from 0 to 1, this value represents a
threshold for the similarity measure, meaning that only graphs where the similarity
measure is equal or greater than the provided threshold value would be returned. Results
are stored in atext file that shows the name of the graph being compared, followed by the
graphs that met the criteria provided by the user (either top N, above or equal to
threshold, or all base graphs) in descending order based on the similarity value (closest
matches are listed first), this helps to identify the closest matches in a more efficient
manner. In case the results are needed for classification purposes, CF-compare can
provide counts based on the class labels in the base dataset. Option -c allows the user to
request class countsto be included. Class counts will be generated in a separate file from
the results, showing the total number of graphs from each class that met the criteria

provided by the user.

34

$> cf-conpare --help

Usage: cf-conpare [options] query set file [base_set file]
If base set is not provided, it conpares the query set to itself.
opti ons:

-t (0..1): Match value threshold
-n (1..n): Top n best matches

-C output class counts

Figure 5.8 CF-compare' s command line

5.3.1 CF-compar€salgorithm

1 CF- conpare(QueryFi |l e, BaseFi | e, t opN, t hreshol d, produced assCounts) {
2
3 array QueryDat aset;
4 array BaseDat aset ;
5 array C assCounts;
6 array topN_nmatches;
7 i nt Tot al Degr ees;
8 doubl e gl1_shortest, gl | ongest, g2_shortest, g2_l ongest;
9 double nv, S, L;
10 file ResultsFile, O assCountsFile;
11
12 /1l Load files
13 For each graph in BaseFile {
14 BaseDat aset . add(gr aph) ;
15 }
16
17 if QueryFile == BaseFile {
18 QueryDat aset = BaseDat aset;
19 }
20 el se {
21 For each graph in QueryFile {
22 Quer yDat aset . add(gr aph) ;
23 }
24 }
25
26 For each q in QueryDataset {
27 For each b in BaseDataset {
28
29 /1l Select the nmax degree between the two graphs
30 Tot al Degrees = max((. Current Fl ows. si ze(), b.CurrentFl ows. size());
31
32 /1 calculate the differences between the each current flow of the
33 /'l sanme degree
34 For d=0 to Tot al Degrees {
35
36 gl_shortest = g.CurrentFl ows[d].shortest();
37 gl _longest = g.CurrentFl ows[d].|ongest();
38 g2_shortest = b.CurrentFl ows[d].shortest();
39 g2_l ongest = b. CurrentFl ows[d].|ongest();
40
41 }
42
43 if gl shortest == g2_shortest {
44 /1 No difference
45 S += 0.0;
46 }

Figure 5.9 CF-compare’ s algorithm

35

}

el se {
/1 Partial Difference
S += abs(gl_shortest-g2_shortest) / (gl_shortest+g2_shortest);
}

if (gl_l ongest == g2_l ongest){
/1 No difference
L += 0.0;

el se {

/'l Partial Difference

L += abs(gl_l ongest-g2_l| ongest) / (gl_Il ongest+g2_I| ongest);
}

/1 Total Degrees * 2 is to account for d shortest
/1 and d | ongest geodesics
m/ =1.0 - ((S+ L)/ (Total Degrees * 2.0));

/1 1f the match value is greater or equal than
/1l the threshold set by the user then store the val ue
[l for pair (q,b)
if (mv >= threshold) ({
t opN_mat ches. add((q, b), nv);
}

} // end For each b

t opN_mat ches. ReverseSort () ;

/] Qutput first top N matches;
For i=0 to topN {
ResultsFile.wite(topN_matches[i]);

/1 CQutput class counts if requested by user

i f Produced assCounts = True {
/1 count per each class how nany graphs in the top N
Cl assCount s[g, t opN_mat ches[i]. cl ass] ++;

}

} // end For

to topN

i f Produced assCounts = True {
Cl assCountsFile.wite(d assCounts[q]);
}

} // end For each q

return;

Figure 5.9 (continued)

CF-compare first loads the query and base files into datasets, lines 12-24. If the

guery set and the base set are the same, the load will only take place one time as both

datasets will be the same. Once both datasets are |oaded, each pair of graph from the

36

guery set and the base set are compared to one another, lines 26-93. First, the
TotalDegrees variable is calculated, thisis equivalent to equation (21) in Section 4.5. For
each set of shortest and longest current flow values for each node degree the difference
between graph q from the query dataset and graph b from the base dataset is calculated,
lines 34-59. Please note that in the event that one of the graphs, either q or b, does not
have a particular current flow value for a determined node degree, avalue of O will be
assigned. With all the current flow values for a particular node degree, that is, current
flow values for the shortest and longest geodesi cs between vertices of the selected node
degree, the match valueisthen calculated as per equation (20), line 63. In lines 68-70, the
match value is compared to the threshold set by the user. If the match value is above or
equal to the threshold then the match is stored. In line 75, all matches that were above or
equal to the threshold are ordered from bigger to smaller. Please remember that the closer
the value isto 1 the closer both graph’s current flow vectors are similar to each other. In
Lines 78-85 we write the output of only thefirst top N matches based on their match
values. If the user requested class counts to be created, a file containing the count of how
many graphs of a particular class were in the top N matches for each graph. Fig. 5.10

shows a sample result output file.

9168, CA 58368: Cl : 0. 99474 50851: Cl: 0. 52679 50848: CA: 0. 51256
50848, CA 50851: Cl : 0. 95929 64052: Cl : 0. 93493 9168: CA: 0. 51256
50851, CI 50848: CA: 0. 95929 64052: Cl: 0. 90196 9168: CA: 0. 52679
58368, CI 9168: CA: 0. 99474 50851: Cl: 0. 52153 50848: CA: 0. 50731
64052, CI 50848: CA: 0. 93493 50851: Cl: 0. 90196 58368: Cl : 0. 49733

Figure 5.10 CF-compare results output file

Thisfile compared five graphs to each other storing only the top 3 matches. Both
guery and base files were the same. Since both, query and base dataset, are the same for

this experiment, each graph will be compared to all other graphsin the dataset excluding
37

itself. Aswe can observe, the file first shows the name of the graph followed by the class
of the graph (if available). For example, graph 9168 belongsto the CA class. Thefirst
match for graph 9168 is graph 58368, the class of the matched graph is also shown,
followed by the match value. In this case graph 58368 belongs to class Cl and the match
value between graph 9168 and graph 58368 was 0.99474. Fig. 5.11 shows graph 9168
and its three closest matches. As we can observe, the closest match, graph 58368, is

similar to 9168, while other matches are clearly different.

G aph 9168 G aph 58368. MV = 0.99474

Graph 50851. MW = 0.52679

Figure 5.11 Graphs 9168, 58368, 50851, and 50848

38

graph, class, top, CA MaxMW_CA C, Mxw_C
9168, CA, 3, 1, 0. 51256, 2, 0.99474
50848, CA, 3 1, 0. 51256, 2, 0. 95929
50851, O, 3, 2, 0. 95929, 1, 0.90196
58368, Cl, 3, 2, 0.99474, 1, 0. 52153
64052, O, 3, 1, 0. 93493, 2, 0.90196

Figure 5.12 Class countsfile
Fig. 5.12 shows the class counts file the graphs in Fig. 5.11. Class counts files
also store the maximum match value for each class. For example for graph 50848, in the
top 3, it has 1 graph from class CA with avalue of 0.5126 and 2 from class CI from
which the maximum match value was 0.95929. In this particular example class CM is not

represented as the dataset file only contained two classes, CA and Cl.

5.3.2 CF-compare’'s computational complexity

CF-compare’ s computational complexity is linear in time to the dimension of the
current flow vector representing the graph, O(D). The process of comparing one graph to
another boils down to solving equation (20); when comparing one graph to a base dataset
the complexity increasesto O(D log D), thisis caused by the ordering of thetop N
results. CF-compare' s computational complexity highlights the benefits of the proposed
approach, the process of converting the graph to a vectorial representation, albeit costly
in time, is only needed one time per graph; any future comparison of such graph to a

database of current flows representing graphs will be almost linear in time.

54 Additional tools
Other tools were developed as part of thisthesisin order to facilitate the analysis

and visualization of the results. These tools are: SDF2GDS and GDS2DOT. SDF2GDS

39

converts an .sdf file also known as Structures Data File which is a common file format
developed by Molecular Design Limited to handle a list of molecular structures with
associated properties[15] into a.gds file, which isthe format expected by CF-vectors.
GDS2DOT exports each graph in the graph dataset file to separate .dot files for each
graph. .dot files as defined by [16] are used by Graphviz asitsinput format. Graphvizisa
popular open source suite of tools developed by AT& T research labs for graph
visualization.

GDS2DOT performs a specia ordering of the verticesin order to prepare the
graph for a better rendering using Graphviz' s neato layout engine. Vertices with alarger
number of edges are defined first in the .dot file; thiswill tell Graphviz to position those

verticesfirst, producing a better graphical representation of the graph.

graph CA50848{

node[shape="circl e"]
"v14" [l abel ="14 C']
"v7" [label ="7 C']
"v4" [label ="4 C']
"v3" [label ="3 N']
"v2" [label ="2 C']
"v1" [label ="1 C']
"v19" [l abel ="19 C']
"v18" [l abel ="18 C']
"v17" [l abel ="17 C']
"v16" [l abel ="16 C']
"v15" [l abel ="15 C']
"v13" [l abel ="13 S"]
"v12" [l abel ="12 C']
"v11" [label ="11 C']
"v10" [l abel ="10 C']
"vo9" [label ="9 C']
"v8" [label ="8 N']
"v5" [label ="5 C']
"ve" [label ="6 O']
"vO0" [label ="0 C']
"vO0"--"v1" [l abel ="1"]
"v1"--"v2" [label ="2"]
"v1"--"v3" [label ="1"]
"v2"--"v4" [l abel ="1"]

Figure 5.13 Graphviz' s dot file example
40

"y2"--"yb"
"v3"--"ve"
"v3t--tvTn
"v4'--"v8"
"v4t--tyo"
"V5"--"v10"
"VT7T--tv1l
"v7"--"v8"
"V9"--"y12"
"v10"--"vl
"v11"--"vl
"v13"--"vl
"v14"--"v1
"v14"--"vl
"v15"--"v1
"v16"--"vl
"y17"--"vl
"v18"--"vl

SRNRENR

(T
EN

[1abel
[1abel
[1 abel
[1 abel
[1abel
[l abel
[1 abel
[l abel ="1"]
[label ="2"]
2" [abel
3" [1 abel
4" [1 abel
5" [1 abel
6" [abel
7" [abel
8" [abel
9" [abel
9" [I abel

g TR T S S —)
[a—

ENNERENRERR

— e e e e e

Figure 5.13 (continued)

41

CHAPTER 6
EXPERIMENTAL RESULTS
6.1 Experimental setup

During the testing of our prototype we applied our algorithms to the NCI-HIV
dataset of chemical compounds[10]. This dataset contains 42,689 chemical compounds,
423 of which are active (CA), 1081 are moderately active (CM), and 41,185 are inactive
(CI). The NCI-HIV dataset has been used in the empirical evaluation of several graph
mining techniques [17] [18] [19] [20]. Thefirst step of our experiments was to convert
the NCI-HIV dataset from .sdf to .gds. We used SDF2GDS for this purpose. Once we had
our graph dataset file, the next step was creating the current flow vectorsfile. Using
CF-vectors on the NCI-HIV .gds file took alittle over 10 minutes on a 2.4 GHz Pentium 4
with 512Mb of RAM. With the NCI-HIV .cfv file at hand we were ready to test the graph
matching potential of our algorithm.

Thefirst set of experiments as described in Section 6.1.1 will show the results of
several comparisons of multiple graphs against the whole NCI-HIV dataset. The second
set of experiments as described in Section 6.1.2 will show the results on the graph
classification problem for the NCI-HIV dataset by using the class counts obtained from
the CF-compare algorithm as the input to several classification models like neural
networks, k-nearest neighbors, and rule based systems. The results are compared to those
reported in [17].

42

6.1.1 Graph visual comparison experiments

After converting the NCI-HIV dataset from an .sdf fileto a.gdsfile and
generating the current flow vectorsfile (NCI-HIV .cfv) the next step in our research was
to find out how the similarity measure works for finding isomorphisms. We compared the
NCI-HIV dataset against itself with athreshold of 1.0. As described before, CF-compare
will compare each graph in the query dataset against all other graphsin the base dataset.
Since both, query and base dataset, are the same for this experiment, each graph will be
compared to all other graphs in the dataset excluding itself. For this experiment, we used
two current flow dataset files (.cfv) extracted out of the same NCI-HIV dataset. Each .cfv
file was produced using a dightly different version of CF-vectors for each file. The
versions vary from each other on the percentage used during the nodal information
integration step described in Section 4.4. Our default implementation, as described in the
pseudocode in Fig. 5.7, used only 10% of the lowest resistance value in the dataset. The
NCI-HIV dataset contains only three possible values for the edge weights, or bonds,
between its nodes, or atoms, single, double, and triple bond, represented with weights of
1, 2, and 3 respectively. The other implementation of the CF-vectors uses a different
percentage of the lowest edge weight value; in this case the percentage is 0% - thisis
equivalent to excluding nodal information when calculating the current flow.

The first current flow vectors dataset file to be evaluated was produced using the
0% percentage; we will refer to this current flow vectors dataset as HIV00.cfv. The
second file produced was using the 10% percentage; we will refer to this dataset as

HIV10.cfv.

43

Graph 1899

G aph 6745

HV00 - MV =1.0 HVO0O - MV =1.0 HV00 - MV = 1.0
HV0O - MV =1.0 HVIO - MV =1.0 HVI0O - MV = 1.0
G aph 1895 G aph 227159 Graph 65248

HWVO0 - MV = 1.0 HWV0 - MV =1.0 HWVO0 - MV =1.0
H V10 — MV = 0.99970 H V10 — MV = 0.99970 H V10 — MV = 0.99960
Graph 4645

H VOO - MV
H V0 - MV

1.0
0. 99950

Figure 6.1 Graph 1899 matches at 0% and 10%

44

For the HIVV00.cfv dataset we found 4,371 compounds with matches having a 1.0
matching value. For the HIV 10.cfv dataset we found 2,216 compounds with matches
having a 1.0 matching value, indicating the match criteriawas more difficult. Fig. 6.1
shows the matches for graph 1899 and their corresponding match values at both 0% and
10%. As we can observe from the figure, al graphs are nearly identical. The only
difference between graphs 1899, 2858, 6745, 45956 is at vertex 6, where for graph 1899
it isasulfur atom, S; for graphs 2858 and 45956 it is a nitrogen atom, N; for graph 6745
it isan oxygen atom, O. Current flow analysis allows for an error-tolerant graph matching
where the matches will not always be perfect, alowing for a graph to be matched to
closdly related graphs.

From the two datasets, HIVV0O and HIV 10, we can observe the impact that
excluding the nodal information during the current flow calculation process has, in
particular for the HIVV0O, where no nodal information is included, more matches were
obtained compared to the number of matches for the HIV 10. The number of compounds
with matches at a 1.0 threshold for the HIVVOO dataset is double the number of matches
for the HIV 10 dataset. This highlights the benefits of including nodal information in the
current flow analysis, as not only the structure of the graph, but also the label information
could be important during the graph matching process.

Due to the sheer size of the dataset we cannot visually verify each of the results,
but after a random verification of several compounds, each and every one of those that
were visually verified were perfect isomorphisms (excluding the same graph compared to

itself). This, of course, by no means allows us to present a sound statement about the

45

efficiency of our prototype, but it is encouraging to see the excellent results achieved
when finding isomorphisms.

The next experiment in our research was to perform a graph matching with a
lower matching value. Instead of applying athreshold of 1.0, we tested with different
thresholds. We compared the HIV 10.cfv dataset to itself with athreshold: 0.97. Applying
the lower threshold we obtained many more compounds with matches; in this case
27,684. Fig. 6.1 shows the match values for the HIV 10.cfv dataset that were above the
0.97 threshold for compound 1899. As we can observe, when excluding the vertex |abel
information from the current flow analysisin the HIVV0O.cfv dataset, the algorithm
selected all graphs with identical structure, regardless of the vertex labels. When using
the HIV10.cfv, which incorporates the vertex label information into the current flow
analysis, only those with labels with very similar values where selected.

We can observe that both 2858 and 45956 are identical on structure and vertex
labels. Graph 6745 only differsin one vertex and given the fact that both oxygen (O) and
nitrogen (N) are very common labels in the dataset, both should have very similar values.
Other graphs that after comparison returned a lower match value differed in more than
one vertex label.

Fig. 6.2 shows results for compound 3417 at the 0.97 threshold. Only three
matches were found for this graph with a match value higher than 0.97. Two of the
matches, graphs 629861 and 629864 display a very similar structure, but as we can see

from their match values, their current flows are different when compared to graph 3417.

46

G aph 3417

G aph 629861
MV = 0.98596

Graph 56450
MV = 0.98231

G aph 629864
MV = 0.97140

Figure 6.2 Graph 3417 matches above 0.97

From Fig. 6.2 we can observe that al the graphs share a structure with amain

body and two long appendixes. The main idea behind current flow analysis for

error-tolerant graph matching is that by calculating the current flows along specific paths

of the graph, the algorithm will capture information not only about the vertices along the

47

path, but also about vertices along side the path as dectric current flows through them.
The characteristics of each graph’s structure and vertex information will provide a very
singular footprint that will allow matching similar graphs as the current flows values
should be similar for similar structures.

Our next figure shows one graph that only returned two matches within the 0.97
threshold. One match valueisreally high and the other one is much closer to the

threshold.

Graph 629871

Graph 629870 G aph 694620
MV = 0.99991 MV = 0.97398

Figure 6.3 Graph 629871 matches above 0.97

48

Graphs 629871 and 629870 are nearly identical asillustrated by their match
value. On the other hand, compound 694620 shares certain characteristics with
compound 629871, especially at the end of the graph which is made up of two oxygen
and one nitrogen atom. We expect that during the current flow analysis these
characteristics are the ones providing a particular current flow for specific geodesics that
when compared to those of another graph will provide the similarities needed to obtain a
high match value.

Figure 6.4 shows compound 633892, which only had one match within the 0.97
threshold. As we can observe, it is hard to discern particular characteristics between these

two graphs, other than the current flow vectors are similar.

G aph 633892 Graph 639234
MV = 0.97450

Figure 6.4 Graph 633892 matches above 0.97

49

Figures 6.5-6.8 show different graphs and their closest two matches with their

correspondent match values for the HIV 10.cfv dataset. The graphs displayed here were

chosen at random from the 42,689 compounds in the NCI-HIV dataset.

GRAPH

MATCH 1

MATCH 2

Graph 642970 Cl ass Cl

Graph 333711 Class Cl
MV = 0.99296

Graph 119076 Cl ass Cl
MV = 0.98010

Graph 670310 Class C

Graph 637419 Class Cl
MV = 0.97739

MV = 0.97940

Graph 131300 Class Cl
MV = 0.97703

Graph 148201 Cass C
MV = 0.97109

Figure 6.5 Graphs 642970, 629789, 106563 matches

50

GRAPH

MATCH 1

MATCH 2

Graph 26540 d ass Cl

Graph 26542 C ass Cl
MV = 1.00000

Graph 4971 dass C
MV = 0.99973

Graph 641523 Class Cl
MV = 0.98283

Graph 645311 Class C
MV = 0.97586

Graph 79050 Cl ass Cl
MV = 0.97385

Graph 84096 Cl ass Cl

MV = 0.97365
Oae)

G aph 76061 Cl ass Cl
MV = 0.99992

G aph 94547 Cl ass Cl

MV = 0.98027
©

51

GRAPH

MATCH 1

MATCH 2

G aph 643418 Class CM

Graph 70804 C ass CA

Graph 659624 C ass Cl

MV = 0.97309

MV = 0.97285

Graph 639749 C ass Cl
MV = 0.97875

Graph 639734 C ass C
MV = 0.97875

Graph 661186 Cl ass CA
MV = 0.99984

Graph 335755 Class Cl
MV = 0.98643

Graph 675450 Cl ass CM
MV = 1.00000

Graph 675449 Cl ass CM

MV = 1. 00000

Figure 6.7 Graphs 643418, 676606, 676419, 675451 matches

52

GRAPH

MATCH 1

MATCH 2

Graph 673997 C ass CA

Graph 686774 Cl ass CM
MV = 0.97777

Graph 696894 Cl ass CM
MV = 0.97552

Graph 671291 C ass CA
MV = 1.00000

Graph 662767 Cl ass CM

MV = 0.97861

Figure 6.8 Graphs 673997, 671292 matches

As we can observe from Fig. 6.5-6.8, current flow analysis for error-tolerant

graph matching allows for a fast comparison of a graph against a dataset of graphs of a

considerable size. In some cases, the results are quite good, like for graphs 26540 and

106563; while on other cases, like graph 642970 it is hard to tell similarities between the

selected graph and its matches. Overall, the selection of matches based on their current

flow vectors should provide results where the structure of the graphs are very similar due

to the fact that by calculating the current flow along shortest and longest geodesics of

each Group-N pair of nodes should provide a very distinctive current flow vector for

each, and asimilar current flow vector for graphs with similar structure.

53

In the next section, we will explore the predictive power of current flow vectors
on the NCI-HIV dataset. As mentioned before, the NCI-HIV dataset classifies its 42,689
compoundsin active (CA), 423, moderately active (CM), 1081, and 41,185 are inactive
(CI). By using the results of current flow analysis for graph classification we will show
that for the NCI-HIV dataset the similarity of the compoundsis an indicator of the class
they belong to. We will also show that by using current flow analysis for graph
comparison will allow usto determine which compounds are similar to each other,
therefore when predicting the class for a compound we will rely on its closest matches as

obtained from using current flow analysis.

6.1.2 Graph classification problem on the NCI-HIV dataset

In order to evaluate the predictive power of current flow vectors on the NCI-HIV
dataset we compare the results against the frequent subgraph discovery algorithm (FSG).
In[18] [19], M. Deshpande et al. investigated the predictive power of the FSG algorithm
using support vector machines (SVM) as the classification technique. The use of SVM
enabled them to associate a higher cost for the mis-classification of positive instances.
Three different classification problems were defined in [18] and [19]:

1. CAvs. CM

2. CA+CM vs. Cl

3.CAvs. Cl
We compared the results of current flow vectors for each of these classification problems.
The first step in our experiment was to generate the current flow vectors for all 42,689
compounds. We calculated the current flow vectors for both 0% and 10% of the lowest

54

edge weight to incorporate nodal information into the current flow analysis. This step

took approximately 10 minutes for each dataset, HIV00.cfv and HIV10.cfv. The next step

was performed for each of the datasets.

The second step was to compare each of the compounds against all other

compounds in the dataset using our similarity measure (excluding the compound

compared to it). The comparison took alittle over 6 hours for each dataset. The results of

the second step were the similarity values (match values) for each of the compoundsin

the dataset compared to all the other compounds as well as the class counts files. Given

the size of the dataset we only stored the 100 closest matches for each compound.

The following table shows the average number of compounds of a particular class

within the top 30 closest matches for the HIV00.cfv dataset and for the HIV 10.cfv

dataset.
Table6.1 Average number of compounds within top 30 matches
Average Average Average

Class Dataset number of CA number of Cl number of CM

CA HIV00 4.012 (£ 4.538) | 23.281 (£ 6.105) | 2.707 (x 2.755)
HIV10 4.019 (£ 4.553) | 23.300 (£ 6.094) | 2.681 (+ 2.746)

cl HIV00 0.241 (£ 0.836) | 29.034 (+ 1.506) | 0.725 (+ 1.037)
HIV10 0.242 (£ 0.840) | 29.033 (+ 1.507) | 0.725 (+ 1.037)

cM HIV00 0.901 (£ 2.039) | 27.441 (+ 3.899) | 1.658 (+ 2.294)
HIV10 0.899 (£ 2.038) | 27.439 (+ 3.901) | 1.661 (+ 2.296)

From the results on Table 6.1 we can observe several facts. First, the number of average

active compounds within the top 30 matches (for the HIV0O0 dataset) for a compound that

isactiveis4.0132 with and standard deviation of 4.538; thisis higher compared to the

average number of compounds that are inactive, 23.281 with a standard deviation of

6.105, and moderately active, 2.707 with a standard deviation of 2.755. Thisis a good

55

indicator that the closest matches' class for a compound could help to determine its class.
If we observe results for the inactive compounds, we notice that within the top 30
matches the average number of inactive compounds 29.034 with a standard deviation of
1.506. Thisindicates that an inactive compound should have within the first 30 matches
at least 29 matches. If we compare this to the number of inactive compounds within the
top 30 for the active compounds, 23.281 to 29.034, we can clearly see the difference.
Another fact to notice from Table 6.1 is how close the results are for both HIV00.cfv and
HIV 10.cfv datasets. This could indicate several things; first, that the nodal information
did not have enough influence on the current flow calculation; second, that the nodal
information does not play a pivotal role in the determination of the class for the NCI-HIV
dataset, or third, that even after including the nodal information based on the vertex labels
(atoms) on the current flow calculation the matches returned were very similar dueto the
structure of the compounds. Based on this fact, we will show the results for the
HIV00.cfv dataset when using the class counts obtained for the top 100 matches.

As mentioned before, class count files store the number of compounds and the
maximum match value per each class within a particular top N. Therefore, after obtaining
the top 100 matches for each graph in the dataset we proceeded to extract the feature
vectors out of the class counts files for each top N/experiment combination.

The idea behind creating one training dataset out of each class count fileisto
evaluate different classification algorithms with different top Ns, it could be that the best
classification is obtained by only looking at the first 30 matches, or it could be that when

looking at the first 80 matches better results would be obtained.

56

Let us start with experiment 1, CA vs. CM. Each training dataset for this
experiment will contain 1,504 feature vectors, one feature vector for each graph that
belongsto classes CA or CM. We created one training dataset for each top N. Since each
top N generates a particular class count file, we have 100 class count files from which we
extracted 100 training datasets each with 1,504 feature vectors.

Each feature vector contains 6 attribute values and 1 class label. The attributes are:

1. Number of CA compounds within thetop N matches

2. Number of CM compounds within the top N matches

3. Number of CI compounds within the top N matches

4. Maximum match value for a CA compound

5. Maximum match value for aCM compound

6. Maximum match value for a Cl compound
The class |abel indicates the real class that the compound being compared belongs to. For
attributes 4, 5, and 6 the maximum match value is determined by the highest ranking
compound for a particular class.

In order to identify the different training datasets we used the following naming
convention: Ei_topN, wherei is the experiment number and N isthetop N class count
file used to extract the feature vectors. For example, one training dataset for experiment 1
will be the one extracted from the class count file produced out of the top 10 results. We
will refer to this particular training dataset as E1_topl0, where E1 represents that is for
experiment 1 and top10 indicates that it was extracted from the class count file for the top
10 results. The reason for identifying the particular experiment in the name of the dataset
is due to the fact that we are evaluating a 2-class classification problem. For experiment 2

57

when we combine CA+CM, any compound belonging to class CA or CM will be class 1
while CI would be class 2.

Similarly to the training dataset E1_top10, we will have 99 more training datasets
for experiment 1, from E1_topl to E1 top100. Analogously, we will have 100 training
datasets for experiment 2, CA+CM vs. ClI; each training dataset with 42,689 training
instances (one for each graph in the NCI-HIV dataset). For experiment 3, CA vs. Cl, we
have another 100 training datasets, each with 41,608 training instances (one for any graph
belonging to classes CA or CI).

Using the 300 training datasets, we used a variety of classification algorithms
including naive Bayes, back-propagation neural networks, and support vector machines
in order to attempt to classify the compounds based on the six attributes defined. Each of
the algorithms was tested with different parameters in order to find the best set of settings
for each algorithm. The idea behind testing several classification algorithms was to find
the best classifier that will capture the underlying patterns stored in the feature vectors
extracted out of the class count files. Thiswas done using Weka 3.5.6 [21]. In order to
determine the best combination of dataset/al gorithm/settings we performed a 5x2 cross-
validation with an F-test. The most accurate on all three classification problems was a

back-propagation neural network.

6.2 Result evaluation and comparison

After determining the best training dataset/classifier combination using a 5x2
cross-validation with an F-test, we performed a five-fold cross-validation on the best
datasets. The reason to perform afive-fold cross-validation isto be able to compare the

58

results against those presented in [18] and [19], where afive-fold cross-validation was
also performed. The results for dataset HIV0O0.cfv are shown in Table 6.2.

Table 6.2 Current flow vectors results on HIV00.cfv dataset

Weka Options

L: learning curve

M: momentum Areaunder a

N: epochs receiver operating

H: neurons on hidden layer L

K: kernel type (2 - RBF) characteristic

- C: cost parameter C for C-SVC curve

Dataset Classifier G: gamma value for RBF kernel (ROC-AUC)
E1 Top36 | Neural Network -L0.3-M 0.2-N150-H 2 0.781 (x0.022)
E2 Top57 | Neural Network -L 0.3-M 0.2-N 500-H 4 0.715 (£0.013)
E3 ToplO | Neural Network -L 0.3-M 0.2-N 150 -H 4 0.865 (+0.022)
E1 Top20 | Naive Bayes 0.754 (x0.012)
E2 Top38 | Naive Bayes 0.711 (x0.020)
E3 Top53 | Naive Bayes 0.859 (+0.015)
E1l Top22 | SVM -K2-C1.0-G0.125 0.764 (x0.019)
E2 Top57 | SVM -K2-C11-G0.200 0.710 (x0.032)
E3 Top32 | SVM -K2-C0.9-G0.175 0.861 (x0.027)

As we can observe from Table 6.2 for experiment 1, CA vs. CM, the best
dataset/classifier was E1_top36 with a neural network; this means that by using a back
propagation neural network with alearning rate of 0.3 (-L 0.3), a momentum of 0.2 (-M
0.2), during 150 epochs (-N 150), and with 2 unitsin the hidden layer (-H 2) to classify
the class counts within the top 36 matches we obtained an area under the curve (AUC) of
0.781 with a standard deviation of 0.022. The AUC was calculated using the default
method provided by Weka, which for the multilayer perceptron (back propagation neural

network) produces a receiver operating characteristic (ROC) curve [21] by modifying the

59

threshold of the output unit to determine what class the instance belongs to. Once the
ROC curve has been determined the area under the curveis calculated.

In [18] [19], each classification problem was evaluated using a five-fold
cross-validation and ROC curves. In order to determine statistical significance when
comparing the results of current flow vectors against frequent subgraph kernel (FSG) we
obtained an AUC average over afive-fold cross-validation. Since we do not have the
variance of the AUC for the FSG results we will assume the same sampled pool variance
asthe one for current flow vectors. Table 5.3 shows the results for each of the three
classification problems comparing current flow vectors to FSG.

Table 6.3 Statistical significance of the results for HIV0O

AUC-FSG Non-Paired | Confidence
Class. Problem AUC-CF | (cost 1.0) | Mean Diff | STDev | T-test Level
(1) CAvsCM 0.781 0.774 0.007 0.021 | 0.50309 68% (win)
(2) CA+CM vsCl | 0.715 0.742 -0.027 0.013 | -3.2839 98% (loss)
(3) CAvsCl 0.865 0.839 0.026 0.020 | 1.868619 | 93% (win)

As we can observe from the results, current flow vectors performed better on

classification problems (1), and (3). In classification problem (2) FSG outperformed

current flow vectors. Based on the analysis of statistical significance we can seethat in

classification problem (1) current flow vectors performed better but only with a 68%

level of confidence that there is statistical significance. On the other hand, performance

on classification problem (3) showed statistical significance at 93% favoring the results

obtained when using current flow vectors. In classification problem (2) FSG

outperformed current flows and it is clear given the high level of confidence, 98%, that

the results for this particular problem were better than current flow vectors.
60

Similar results were obtained when applying the most accurate classifiers to the

class count results for the HIV10.cfv dataset. As noted previously from the averages

between the HIV00.cfv and the HIV 10.cfv dataset, class counts for both datasets are

nearly identical. Table 6.4 shows the results for the HIV 10.cfv dataset.

Table 6.4 Statistical significance of the results for HIV10

AUC-FSG Non-Paired | Confidence
Class. Problem AUC-CF | (cost 1.0) | Mean Diff | STDev | T-test Level
(1) CAvsCM 0.779 0.774 0.005 0.025 | 0.31623 62% (win)
(2) CA+CM vsCl | 0.717 0.742 -0.025 0.014 |-2.82346 | 98% (loss)
(3) CAvsCl 0.867 0.839 0.028 0.019 | 2.33010 97% (win)

61

CHAPTER 7
SUMMARY AND FUTURE WORK
7.1 Summary

Current flow analysisin eectrical networks as atool for error-tolerant graph
matching holds the potential to be a very powerful approach for structural graph
similarity. Thistechnique can prove very valuable in datasets where the topol ogical
information of the graphs holds most of the information; by including nodal information
during the current flow calculation, the incorporation of the information stored in the
vertex labels is taken into account while generating a current flow vector to represent a
particular graph. Examples of such graph datasets are chemical compound datasets,
fingerprint matching, and handwriting recognition datasets. As shown in our empirical
results, current flow analysis emerges as a promising technique to detect graph
isomorphisms, even on datasets where the vertex label information is important, as seems
likely in the case of chemical compounds. Similar graph structures could provide hints
about the chemical composition, and current flow similarity could yield good results to
find similar compounds.

The potential of current flow analysisfor graph classification is very promising as
demonstrated by the results obtained on the NCI-HIV dataset. Comparing the results
obtained using current flow vectors (CFV) against the frequent subgraph kernel (FSG) we
observed that for experiment number 1, CA vs. CM, the results were about the same. For

62

experiment number 2, CA+CM vs. Cl, FSG is better than our approach; and for
experiment number 3, CA vs. Cl, current flow vectors produced better results. Based on
these results, it is encouraging to see a somehow competitive performance given the fact
that it was the first set of experiments for a new technique. The usage of class countsis
only one of many options available to utilize the results provided by current flow vectors
analysis. The usage of a voting mechanism between the different classifiers created by
using different top Ns matches could be another avenue to investigate and hopefully
obtain better results. Another use of the results produced by comparing the current flow
vectors of a graph database isto classify graph structures with kernel methods. As
mentioned before the characteristics of afunction k: GxG - Rto be referred as a graph
kernel isto be avalid positive kerndl. Since k is symmetric and non-negative, it can make

up a positive definite matrix.

7.2 Futurework

Future work analyzing other datasets and further exploration of the classification
capabilities of the current flow similarity measure is needed in order to develop the full
potential of this promising technique. The usage of match valuesto make up agraph
kernd that incorporates into a support vector machine or other kernel-based algorithm
that isolate the learning algorithm from the instances, in other words, the learning
algorithm does not need to access any of the information contained in the graph directly.

Further work on the area of visual comparison is also needed in order to
consolidate current flow analysis as a viable technique for graph comparison. As
mentioned before, experiments on image databases in order to find similar images would

63

be a great area of research to apply our technique. Different methods to incorporate nodal
information into the current flow calculation can be adapted depending on the dataset to
be evaluated. In the case of images, similar color information could add similar resistance

values to the edges connected by specific nodes.

64

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

B. T. Messmer and H. Bunke, “A new algorithm for error-tolerant subgraph
isomorphism detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 5,
pp. 493-504, 1998.

M. Neuhaus and H. Bunke, “Edit distance-based kerndl functions for structural
pattern classification,” Pattern Recogn., vol. 39, no. 10, pp. 1852-1863, 2006.

H. Bunke and K. Shearer, “A graph distance metric based on the maximal
common subgraph,” Pattern Recogn. Lett., vol. 19, no. 3-4, pp. 255-259, 1998.

D. Justice, “A binary linear programming formulation of the graph edit distance,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1200-1214, 2006,
fellow-Alfred Hero.

M.-L. Ferndndez and G. Valiente, “A graph distance metric combining maximum
common subgraph and minimum common supergraph,” Pattern Recogn. Lett., vol.
22, no. 6-7, pp. 753-758, 2001.

W. D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray, “Graph distances using
graph union,” Pattern Recogn. Lett., vol. 22, no. 6-7, pp. 701-704, 2001.

C. Faloutsos, K. S. McCurley, and A. Tomkins, “Fast discovery of connection
subgraphs,” in KDD ’04: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. New York, NY, USA: ACM
Press, 2004, pp. 118-127.

P. G. Doyleand J. L. Snell, “Random walks and e ectric networks,” Mathematical
Association America, vol. 22, 1984.

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press,
2001.

DTP, “AID2DA99 42,689 2d structures with aids test data as of october 1999, in

sdf format.” Downloaded from http://cactus.nci.nih.gov/ncidb/download.html, Oct.
1999.

65

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. J. Cook and L. B. Holder, Mining Graph Data. John Wiley & Sons, 2007.
L. O. Hall and A. Hildoer, “Compound matching using current flows,” 2006.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, 2001.

R. Pozo, “TNT Home Page,” 2004. [Onlin€]. Available: http://math.nist.gov/tnt/

A. Daby, J. G. Nourse, W. D. Hounshéll, A. K. I. Gushurst, D. L. Grier, B. A.
Leland, and J. Laufer, “Description of several chemical structure file formats used
by computer programs developed at molecular design limited,” Journal of
Chemical Information and Computer Sciences, vol. 32, no. 3, pp. 244-255, 1992.

E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with dot,” AT& T Bell
Laboratories, Murray Hill, NJ, USA, Technical Report, Feb. 2002. [Online].
Available: http://www.research.att.com/sw/tool s/graphviz/dotguide.pdf

C. Borgdlt and M. R. Berthold, “Mining molecular fragments: Finding relevant
substructures of molecules,” in ICDM " 02: Proceedings of the 2002 IEEE
International Conference on Data Mining (ICDM’02). Washington, DC, USA:
|IEEE Computer Society, 2002, p. 51.

M. Deshpande, M. Kuramochi, and G. Karypis, “ Automated approaches for
classifying structures,” in BIOKDD, 2002, pp. 11-18.

, “Frequent sub-structure-based approaches for classifying chemical

compounds,” in ICDM ' 03: Proceedings of the Third IEEE International

Conference on Data Mining. Washington, DC, USA: IEEE Computer Society,
2003, p. 35.

S. Kramer, L. D. Raedt, and C. Helma, “Molecular feature mining in HIV data,” in
KDD ’01: Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining. New York, NY, USA: ACM, 2001, pp.
136-143

|. H. Witten, E. Frank, Data Mining: practical machine learning tools and
techniques, 2nd ed. Morgan Kaufmann Publishers, 2005.

66

